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Abstract Bug Localization is the automated process
of finding the possible faulty files in a software project.
Bug localization allows developers to concentrate on
vital files. Information retrieval (IR)-based approaches
have been proposed to assist automatically identify soft-
ware defects by using bug report information. However,
some bug reports that are not semantically related to
the relevant code are not helpful to IR-based systems.
Running an IR-based reporting system can lead to false-
positive results. In this paper, we propose a classifica-
tion model for classifying a bug report as either unin-
formative or informative. Our approach helps to lower
false positives and increase ranking performances by fil-
tering uninformative information before running an IR
based bug location system. The model is based on im-
plicit features learned from bug reports that use neu-
ral networks and explicit features defined manually. We
test our proposed model on three open-source software
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projects that contain over 9,000 bug reports. The re-
sults of the evaluation show that our model enhances
the efficiency of a developed IR-based system in the
trade-off between precision and recall. For implicit fea-
tures, our tests with comparisons show that the LSTM-
network performs better than the CNN and multi-layer
perceptron with respect to the F-measurements. Com-
bining both implicit and explicit features outperforms
using only implicit features. Our classification model
helps improve precision in bug localization tasks when
precision is considered more important than recall.

Keywords Bug Classification · Bug Localization ·
Bug Report Quality · Machine Learning

1 Introduction

A software bug report is a descriptive document used to
record the scenario of a software product’s unexpected
behaviors. It represents the backbone of program re-
pair, as it allows developers to be aware of all software
anomalies, either caught in the testing process, or ex-
perienced by end users. Such anomalies are known as
bugs or defects (Bruegge and Dutoit, 2009). There de-
fects undergo a life cycle that starts with its triage for
verify whether it is a known bug that has been recently
reported. If it is not a duplicate bug, then it under-
goes the assignment, which is the process of finding the
most suitable developer to debug it. Once a developer
is assigned, the assignee analyzes the report description
and tries to reproduce the problem in order to locate
the faulty file(s) (LaToza and Myers, 2010). This pro-
cess is known as bug localization (Bacchelli and Bird,
2013). Once a patch is generated, the patched code is
re-tested to validate the disappearance of the bug. This
process is known to be manual intensive, which can



2 Fan Fang et al.

negatively impact team productivity especially that the
number of bug reports tends to be proportional to soft-
ware growth. For instance, the Eclipse Platform project
team received 1,567 bug reports in 2017 alone1, averag-
ing four bug reports a day. Thus, the preciseness of the
information in the bug report is important to facilitate
the discovery of the bug (Buse and Zimmermann, 2012).
However, due to the various possible sources reporting
bugs, it is hard to guarantee that all bug reports contain
sufficient information to easily debug them, along with
the explosion of the number of tightly-coupled classes
and modules to investigate, makes the bug-fixing pro-
cess nontrivial and challenging (Breu et al, 2010).

As the investigation of these reports is tedious and
time-consuming (Murphy-Hill et al, 2013), various stud-
ies have been proposed to automate this process by pre-
selecting candidate files that are most likely to contain
the bug. These studies rely on creating a similarity be-
tween the reported bug text information, and the cor-
responding software artifacts. Since bug reports, and
software artifacts are written in either natural language
or source code, these approaches heavily rely on Infor-
mation Retrieval (IR)to define their similarity function.
In order to develop this similarity function, intelligent
algorithms have been deployed to learn from previously
solved bug reports by creating features that capture the
closeness of the bug report and its corresponding in-
fected file(s). In this context, recent studies have been
relying on Machine Learning (ML) and Deep Learning
(DL) to localize files for bug reports (Lam et al, 2015;
Huo and Li, 2017; Huo et al, 2016). Similaryly, we de-
veloped, in our previous studies (Ye et al, 2014, 2016),
a learning-to-rank model combining hand-defined fea-
tures to rank top potential faulty files. Many other ML
and DL-based approaches, deploying a variety of IR-
based techniques to calculate features were also investi-
gated in the literature, such as the Vector Space Model
(VSM) (Zhou et al, 2012; Saha et al, 2013), Naïve Bayes
(Kim et al, 2013), Latent Dirichlet Allocation (LDA)
(Lukins et al, 2010; Nguyen et al, 2011), combinations
of VSM and LDA (Rao and Kak, 2011), etc.

These IR-based approaches, unlike some other spectrum-
based approaches (Cleve and Zeller, 2005; Dit et al,
2013; Poshyvanyk et al, 2013, 2007; Liu et al, 2005; Jin
and Orso, 2013; B. Le et al, 2016; Le et al, 2015; Jones
and Harrold, 2005) that use runtime execution informa-
tion to locate bugs, do not require running test cases.
However, because they rely on the bug report content,
the uneven quality of bug reports can be an impediment
to their performance.

According to a user study by Bettenburg et al (2008),
in which they receive responses from 446 developers, a

1 https://bugs.eclipse.org/bugs/

mismatch is discovered between whatever is considered
by developers as useful and what bug reports are de-
scribing. They consider reports to be of good quality, if
they easily facilitate the replication of a given bug. How-
ever, not all bug reports are of similar quality. For in-
stance, incomplete or even ambiguous information can
be found in bug reports (Bettenburg et al, 2008; Kim
et al, 2013; Hooimeijer and Weimer, 2007).

Furthermore, there are reports that may be useful to
programmers but not necessarily helpful for IR-based
techniques. For instance, if we consider bug 3055712

from the Eclipse platform, it describes a given prob-
lem as: “Links in forms editors keep getting bolder and
bolder ”. When reading this reports, developers were able
to investigate the files related to menus and figures,
through group discussion that the buggy file was Tex-
tHyperlinkSegment.java. However, TextHyperlinkSegment.java
has no explicit semantic relationship with the bug re-
port. So, using the VSM of Lucene3 for the purpose
of ranking all candidate files, none of the top ranked
ones were relevant. VSM has been recommending files
that are semantically closer to the given description,
and so, files related to the forms were making the top
like FormPage.java and FormEditor.java.

So, running IR-based techniques on such bug re-
ports, being semantically far from existing source code,
would lower the precision of these techniques. There-
fore, if we can identify them early in the bug localiza-
tion process, then keeping silent can decrease the false
positiveness of the model.

In this context, Kim et al (2013) proposed a two-
phase model that first classifies bug reports into ei-
ther “informative” or “deficient” and then locates bugs
for only “informative” reports. Their model uses fixed
buggy files as labels and applies Naïve Bayes to clas-
sify an “informative” report to a specific label (buggy
file). However, if a new buggy file has not been fixed
before, it would not be considered as a label and hence
can not not be located. To address this bug relevancy
problem, Kim’s work inspired us to, before applying a
specific IR-based system to find the bug, perform a bug
report classification to filter out deficient reports and
reports that are unhelpful to the IR-based system. By
filtering out deficient reports, we believe that our bug
localization will be more accurate at the expense of rec-
ommending solutions for a lesser number of reports.

Our work deploys the Long Short-Term Memory
(LSTM) model to create a filtering process that is initi-
ated before processing any bug reports for localization.
Our model gets as input a open bug report, and outputs
a binary decision on whether this report is “informative”

2 https://bugs.eclipse.org/bugs/show_bug.cgi?id=305571
3 https://lucene.apache.org/core/2_9_4/scoring.html
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or “uninformative” with regard to any IR-based bug lo-
calizer. In a nutshell, our model is a Recurrent Neu-
ral Network (RNN) with LSTM units (Hochreiter and
Schmidhuber, 1997) for learning features from sequence
data. LSTM has been recently investigated for the res-
olution of Software Engineering problems (Choetkier-
tikul et al, 2018; Huo and Li, 2017). We use LSTM
to learn from bug reports their vector representations,
which then serve as input features to a Softmax layer
for classification. Once the model is trained, it would
be able to classify a given report as “informative”, or
being safe to be used by IR-based approaches, other-
wise, if it classifies the report as “uninformative”, then
the IR-based localization is skipped.

To test the efficiency of our classification, we tested
our LSTM binary classifier using 9,000 bug reports, ex-
tracted from three large-scale open-source Java projects,
widely used in previous bug localization studies. The
validation shows that, under a trade-off between the
classification recall and precision, the LSTM binary clas-
sifier is able to support IR-based localizers in increasing
their accuracy and obtain more precise ranking results.

Our experiments contain a comparative study be-
tween LSTM and Convolutional Neural Network (CNN)
(Lecun et al, 1998) (another class of DNN that is re-
cently used to solve SE tasks (Le et al, 2015; Xu et al,
2016; Mou et al, 2016)), multilayer perceptron (Hornik
et al, 1989), and a simple baseline approach classifying
a bug report based on its length under the assump-
tion that larger descriptions are most likely to contain
more relevant content. Our findings demonstrates that
our baseline is as competitive as the the multilayer per-
ceptron, while being outperformed by both LSTM and
CNN. However, our model strikes the best trade-off be-
tween precision and recall.

The remainder of this paper is structured as follows.
Section 2 provides an overview of the bug locating of
the pre-filter approach. Section 3 explains the bug re-
port classification adaptation of the LSTM network. In
Section 4, we present CNN classification. In Section 5,
a multi-layer perceptron is discussed. Section 6 displays
our explicit features for bug report classification. Sec-
tion 7 illustrates the setup and results of the evaluation.
We discribe our threats to validity in Section 8. Follow-
ing a discussion of related work in Section 9, the paper
ends in Section 10 with future work and concluding re-
mark.

2 High Level Architecture of Bug Report
Pre-Filtering

Our approach overview is outlined in Figure 1. Our
pre-filtering approach is activated whenever a verified

bug report is received. It preprocesses its textual infor-
mation, and feeds it into the neural network, already
trained using previous reports and their corresponding
source code. The model makes the binary decision of ei-
ther classifying the bug report as “informative” and “un-
informative”. A bug report is considered informative if
its corresponding textual information is similar to those
of reports whose infected files were successfully identi-
fied by the IR-based localizers. In that case, the bug
reports can be used as input to the localizer in place,
which leverages the report content to rank top source
code files that are most likely related to the given bug
report. On the other hand, a bug report with the label
“uninformative”, is considered unhelpful to the IR-based
localizer. Note that an uninformative report can be also
given to the IR-based localizer, but the chances of the
loclizer’s success in finding the adequate source files to
recommend is unknown, and eventually lower than the
chances of an informative one, as we will later demon-
strate in the experiments. Note that we did not specify
any localizer, since there are many existing techniques
that are compatible with our proposed approach.

3 Bug Report Classification using an LSTM
Network

...

Fully Connected

LSTM Cell LSTM Cell LSTM Cell LSTM Cell

Softmax

0.05 | 0.95Uninformative | Informative
Probabilities

W1 W2 W3 Wn

embeddings

Label

vector representations (word embeddings) of words in a bug report

Fig. 2: Bug-report classification architecture: using
LSTM.

Our classification model’s architecture is sketched in
Figure 2. For an input report, it transforms its works
into their vector representation, which are then sent
as input to a Recurrent Neural Network (RNN) imple-
mented with LSTM units. The output of the LSTM
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Fig. 1: High level architecture: pre-filtering before ranking.

unit at the last time step is fed into a fully connected
layer, followed by the Softmax model that produces the
categorical distribution.

In the coming subsections, we provide details of each
step.

3.1 From Bug Report to Bug Report Matrix

In a list of bug reports, we combined the description
and summary of the bug report into a single docu-
ment. We applied the data pre-processing on the doc-
ument where any numerical number and text punctu-
ation will be removed. Next, we separated the text by
white space to acquire a bag-of-wordsT of the docu-
ment: T = (w1, w2, w3, ...wN ), where the word token in
the study is wi, and the total number of words is N .

Then we will display each word-token wi with a
d-dimensional vector of an actual-number wi, which
names word-embedded capturing those contextual se-
mantics meaning Levy and Goldberg (2014). We utilize
the Mikolov’s Skip-gram Le and Mikolov (2014) to the
study in order to learn the model of the word embed-
ding with the size of d1 on the dumps of Wikipedia
data4, the reference of the programming language as
well as project development documents.

Bug reports may have different lengths. RNN can
work on variable-length sequence input. However, when
we train and update the LSTM network, we use mul-
tiple bug reports (e.g., 64) in a mini-batch to compute
the gradient of the cost function at each step. For sim-
plicity, we can set a fixed size of d2 to all the bug reports
so that a training batch can be represented by a single
tensor in the TensorFlow implementation of RNN5. A
bug report with less than d2 words will be padded with
zero vectors.

4 https://dumps.wikimedia.org/enwiki/
5 https://www.tensorflow.org/tutorials/recurrent

Then the original bag-of-words T of a bug report
can be converted into a matrix of real numbers: M ∈
Rd1xd2, where M = (w1,w2,w3, ...,wd2) and wi ∈
Rd1 is the embedding of word wi. We call this matrix
a bug report matrix that serves as input to the LSTM
network.

3.2 From Bug Report Matrix to Feature Vector

An LSTM network is a RNN using LSTM units in the
hidden layer, where an LSTM unit is composed of a
memory cell and three multiplicative gates (an input
gate, an output gate, and a forget gate) Hochreiter and
Schmidhuber (1997). Traditional RNNs are difficult to
train on long sequences due to the vanishing gradient
problem Bengio et al (1994). LSTM networks effectively
alleviate this problem by using the multiplicative gates
to learn long-term dependencies over long periods of
time.

LSTM Cell LSTM Cell LSTM Cell

hihi−1 hi+1

hihi−1

c i−1 c i

w i w i+1w i−1

Fig. 3: An LSTM Network.

The LSTM network takes the bug report matrixM
as a time series input (from w1 to wn). At each time
step, as shown Figure 2, an embedding wi is fed into
the LSTM network, where the output hi ∈ Rm of an
LSTM unit is determined based on three types of input:
the current embedding wi, the previous LSTM output
hi−1, and the content of the memory cell ci−1 ∈ Rm
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from the previous time step, where m is the number of
hidden units (states) in the memory cell.

The output of the LSTM unit from the last time step
hn will be used as the final output h of the LSTM net-
work. It is a feature vector representation of the original
bug report that captures the structural and semantic
dependencies.

3.3 From Feature Vector to Categorical Distribution

The output of the LSTM network h ∈ Rm is fed into
a fully connected layer with rectifier (ReLU) Nair and
Hinton (2010) activation function.

x = max(f , 0), f = UTh+ b (1)

The output x ∈ Rn of the fully connected layer is
shown in Equation 1, where U ∈ Rmxn is the weight-
ing matrix initialized using the Glorot uniform scheme
Glorot and Bengio (2010), b ∈ Rn is the bias, and
n = 2 is the number of categories. It serves as input to
a Softmax model.

Softmax normalizes x ∈ Rn into a new n-dimensional
vector ỹ with real numbers in the range [0, 1]. The ele-
ments of ỹ sum up to 1. So it can be used as the cat-
egorical (probability) distribution over all the possible
categories: “informative” and “uninformative”.

ỹi = P (r ∈ i|x) = σ(vT
i x) =

exp(vi
Tx)∑2

k=1 exp(vk
Tx)

, i ∈ [1, 2]

(2)

Given x, the probability of the ith category for bug
report r is denoted in Equation 2, where v is the weight-
ing vector.

Finally, the bug report is classified into the category
with the largest probability value.

3.4 Model Training

Parameters of the LSTM network, fully connected layer,
and the Softmax model are trained on minimizing the
cross-entropy error using Adam (adaptive moment es-
timation) optimizer Kingma and Ba (2014).

J(w) =
∑
r∈R

n∑
i=1

(yi log ỹi + (1− yi) log(1− ỹi)) (3)

The cross-entropy cost function is shown in Equa-
tion 3, where yi is the observed probability of category

i for bug report r, ỹi is the estimated probability, R
denotes a training batch.

Before training, the training set is split into small
batches. During training, the models are updated using
the gradient of the cost function computed over a mini-
batch set. Using batches improves training efficiency,
helps avoid local minima, and achieves better conver-
gence Goodfellow et al (2016).

One cycle (a forward pass and a backward pass)
of seeing all the training data is called an epoch. Let
T denotes the training set and R be a mini-batch, the
number of batches is num_batches = |T ||R|−1. So each
epoch updates the models num_batches times.

The models are trained over a maximum 500 epochs
with an earlier stopping criterion, which deems conver-
gence when seeing a certain number (e.g., 10) of con-
tinuous performance degrade on the validation dataset.

To achieve more robust convergence, we also apply
the variational dropout technique Gal and Ghahramani
(2016) during training, which reduces over-fittings by
randomly cleaning up some input, output, and hidden
units.

4 CNN for Bug Report Classification

A CNN is a deep feedforward neural network composed
of one or more convolutional layers with subsampling
(poolings) Lecun et al (1998). Unlike RNNS that mem-
orize the past and use the previous output to update
the current states, information in CNNs passes through
in one direction and never go back. While LSTM net-
works are robust for learning long-term dependencies
from time series, CNNs learn dependencies from the
spatial locality and work effectively on 2-D structure
(e.g., image) Russakovsky et al (2014).

Convolution Max pooling
Fully

connectedBug report matrix Convolution Max pooling

Softmax

0.05 | 0.95
Uninformative | Informative

Probabilities

Label

Fig. 4: Bug-report classification architecture: using
CNN.
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Figure 4 shows the overall architecture of using CNN
for bug report classification. In this paper, we use a
CNN with two convolutional layers with max poolings
followed by two fully connected layers with sigmoid the
activation function. It takes as input a bug report ma-
trixM∈ R100x100 as described in Section 3.1. The first
convolutional layer uses eight fixed-size (5x5) filters to
perform convolution operations over the input matrix
and outputs the same number of feature maps. A max-
pooling layer reduces the size of the feature maps by
subsampling. The second convolutional layer using six-
teen filters takes as input the output of the first layer.
The fully connected layers (with fan-out of 512 and 2
respectively) project the sixteen feature maps from the
second convolutional layer to a vector that serves as in-
put to the Softmax model for computing the probability
distribution.

We use the same training procedure as discussed in
Section 3.4 to train the models (CNN and Softmax) by
minimizing the cross-entropy cost function per mini-
batch over a maximum of 500 epochs with an early
stopping criterion.

5 Multilayer Perceptron for Bug Report
Classification

A multilayer perceptron is a feedforward neural net-
work that projects data from the input layer to a linear
separable space through multiple hidden layers with ac-
tivation functions (Hornik et al, 1989).

f1(x) = G1(W1x+b1), f2(x) = G2(W2f1(x)+b2), ...

(4)

Given input x, the output fi(x) of the ith hidden
layer is shown in Equation 4, where Wi and bi are the
weights matrix and bias, Gi is the activation function.

We use a multilayer perceptron with three hidden
layers, all using 500 computation nodes and sigmoid
the activation function. A bug report matrixM is un-
packed to a vector that serves as input to the first hid-
den layer. The output of the last hidden layer is fed into
a fully connected layer, followed by a softmax model to
estimate the categorical probabilities.

The models are trained by minimizing the cross-
entropy function using the same training scheme, as
discussed in the previous sections.

6 Explicit Features for Bug Report
Classification

Besides using neural networks to learn implicit features,
we design explicit features for bug report classification.
Table 1 shows the design of explicit features, where fea-
tures about action items are from a related work (Bet-
tenburg et al, 2008). When a bug report is received, it
will be represented as a normalized feature vector of
all the explicit and implicit features. The feature vec-
tor will serve as input to supervised learning models
such as support vector machine (SVM) and k-nearest
neighbor for classification. The learning models will be
trained using a dedicated training set.

feature 1 = | r.summary | (5)

Feature 1 measures the size of the report summary,
where r refers to the bug report, and r.summary refers
to the report summary represented as a bag of words.

feature 2 = | r.description | (6)

Feature 2 measures the size of the report description,
where r.description refers to a bag of words of the re-
port description.

feature 3 =

{
1 if r contains code samples

0 otherwise
(7)

Feature 3 checks if the bug report r contains code sam-
ples. We implemented a parser based on related work
(Moonen, 2001) to identify Java code samples. If the
report r contains code samples, we set feature 3 to be
1. Otherwise, it will be 0.

feature 4 =

{
1 if r contains attachments

0 otherwise
(8)

Feature 4 checks if the bug report r contains attach-
ments. We use regular expression (Bettenburg et al,
2008) to identify attachments. We do not distinguish
the types of attachments. We consider different types
of attachments (e.g., patches, screenshots) are all im-
portant to provide helpful information. If the report r
contains attachments, we set the feature to be 1 and 0
otherwise.

feature5 =

{
1 if r.summary contains class names

0 otherwise

(9)
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Table 1: Explicit and implicit features.

Structural features:
feature1 – the length of the report summary
feature2 – the length of the report description
feature3 – if the report contains code samples or not
feature4 – if the report contains attachments or not
Keyword-related features:
feature5 – if the report summary contains class names or not
feature6 – if the report descriptions contains class names or not
feature7 – if the report summary contains method names or not
feature8 – if the report descriptions contains method names or not
feature9 – the number of action items (e.g., open, select, click) Bettenburg et al (2008)
Neural Network features:
feature10 – LSTM categorical probabilities
feature11 – CNN categorical probabilities
feature12 – multilayer perceptron categorical probabilities

If a bug report mentions a class name in its summary,
that class is very likely to be relevant to the bug. The
appearance of class names in the report summary is a
signal that the report may be informative. For a report
r, if its summary r.summary contains class names, we
set feature 5 to be 1 and set to 0 otherwise.

feature6 =

{
1 if r.description contains class names

0 otherwise

(10)

Feature 6 checks if the description r.description of a
bug report r contains class names. If yes, we set it to
1. If not, we set it to 0.

feature7 =

{
1 if r.summary contains method names

0 otherwise

(11)

The appearance of a method name in the summary
r.summary of a bug report r can also be a signal that
the method is relevant to the bug. Feature 7 checks if
the summary contains method names or not.

feature8 =

{
1 if r.description contains method names

0 otherwise

(12)

Similarly, feature 8 is designed to check if the descrip-
tion r.description of a bug report r contains method
names or not.

feature 9 = | action items | (13)

According to a related work (Bettenburg et al, 2008),
action items (keywords about actions, e.g., open, select,

click) could be a signal indicating that the report may
provide helpful information to reproduce and locate the
bug. We follow this work to capture action items in
the report content, including summary and description.
Given a bug report, feature nine is designed to measure
the total number of action items in the report.

feature 10 = Problstm(”informative” | r) (14)

Feature 10 is the LSTM-network output categorical prob-
abilities as discussed in Section 3.3. More specifically,
Problstm(”informative” |r) refers to the probability of
the given bug report r being classified as “informative”.

feature 11 = Probcnn(”informative” | r) (15)

Feature 11 is the output of the CNN model as discussed
in Section 4, where Probcnn(”informative”|r) refers to
the probability of the given bug report r being classified
as “informative”.

feature 12 = Probmlp(”informative” | r) (16)

Feature 12 is the multilayer perceptron output as dis-
cussed in Section 5, where Probmlp(”informative” | r)
refers to the probability of the given bug report r being
classified as “informative”.

6.1 Feature Scaling

Feature scaling helps normalize different types of fea-
tures within the same range between 0 and 1 so that
they are comparable with each other. Since many fea-
tures in Table 1 are already within the range between
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0 and 1, we only perform feature scaling for features 1,
2, and 9.

φ′ =

{
φ− φ.min

φ.max− φ.min (17)

Given the original feature φ, let φ.min and φ.max be
the minimum and the maximum observed values, φ′ is
the normalized feature.

6.2 Bug Report Classifications using All Features

When a bug report is received, we will calculate its fea-
tures in Table 1. The report will be represented as a
vector of twelve features. The feature vector will serve
as input to a classifier, which will classify the report as
either “informative” or “uninformative”. In this study,
we compared four classifiers, including Support Vector
Machine (SVM), K-Nearest Neighbours (KNN), Deci-
sion Tree, and Naive Bayes.

7 Evaluation

The goal of our experiments is to challenges the per-
formance and feasibility of our classifier, as part of the
larger bug localization process. We first want to see how
accurate is our classification, in terms of the distinction
between relevant and non-relevant reports with regard
to IR-based localizers. Also, our ultimate goal is to im-
prove the accuracy of these localizers with the presence
of our tool. We would also like to see the difference in
output between the Section 3, the Section 4, the Sec-
tion 5 and section 6 using multiple classifiers.

7.1 IR-based localizers

Our approach does not require a specific localizer to
work with. For our expeirment, we deploy our own re-
cent localizer Ye et al (2016). We choose to use as 1) it
is available; 2) its localization is IR-Based; 3) it is com-
petitive with other state of the art localizers Lam et al
(2015, 2017). Our localizer deploys a Learning-to-Rank
model that gives weights to Word-Embedding-based
features and VSM-based features to rank correspond-
ing files for a given bug report. In this study, we call it
LRWE.

7.2 Benchmark Datasets

We use our own dataset, proposed in our initial bug
localization investigation (Ye et al, 2014). This dataset

contains 9,105 bug reports, extracted from famous open
source projects, namely Eclipse Platform UI, JDT, and
SWT. each bug report contains a textual description
of the anomaly, its reporter, the ID of the developer
who wrote the fix, along with, most importantly, the
set of files that were fixed as part of this bug resolution.
Such dataset has been used as the ground truth for
many bug localization and bug assignment studies (Ye
et al, 2014, 2016; Lam et al, 2015, 2017; Dilshener et al,
2016). Those bug reports were categorized into three
classification model. The first category is the training
dataset to train the classification model based on 5,000
bug reports. The second category is the testing dataset,
where is the classification test on 2,596 bug reports.
The last category is the validation dataset, where we
validate our classification model on 1,500 bug reports
of whether it is covered or not.

7.3 Labeling the Data

The main aim of our classification experiment is to filter
out the bug report that is not useful while maintaining
the desired bug report to the IR-Based system for in-
creasing the locating performance and decreasing the
false positives. Therefore, labeling the data is the basis
of our experiment. Due to utilizing an automatic and
reliable process for assessing our experiment, the IR-
Based system used to determine the usefulness of bug
reports in either “informative” or “uninformative”.

Due to utilizing an automatic and reliable process
for assessing our experiment, the IR-Based system used
to determine the usefulness of bug reports in either “in-
formative” or “uninformative”. More precisely, we exe-
cute the bug locating system LRWE on every individual
bug report that we have on the corresponding source
files that examined from commit rights of projects be-
fore the bug fixing commits. The system displays the
output of all the entire source code files. The list of the
source code files is sorted based on the bug report label
as “predictable” if there is at least one buggy file that
places in the top N positions. Otherwise, if the source
code files ranked in the list of topN positions, these files
are not relevant, and we label them as “uninformative”
for the bug report.

According to Miller’s 7± 2 law (Miller, 1956), indi-
viduals are able to perform concurrently seven more or
less two activities. So we select N = 10if there is a real
bug located in the top 10 suggestions, supposing a list
is helpful to users.After we performed the data label-
ing process, all of our bug reports in the dataset, which
are 9,105, should be labeled as either “informative” or
“uninformative”.
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Table 2: Benchmark Projects: bug reports are split into a testing, a validation and a training set.

Project Time Range # reports # reports # reports total
for testing for validation for training

Eclipse 2001-10 – 2014-01 1,156 500 2,000 3,656
Platform UI

SWT 2002-02 – 2014-01 817 500 1,500 2,817
JDT 2001-10 – 2014-01 632 500 1,500 2,632

7.4 Evaluation Metrics

From two points of view, we examine our classification
of bug reports. We would like first to test the efficiency
of its classification. Second, we would like to check if it
will help to increase the performance of the IR-based
bug localization system. We then perform studies using
the following evaluation measurements:

– True Positive : an “informative” bug report that is
also classified as “informative”

– False Positive : an “uninformative” bug report that
is classified as “informative”

– True Negative : an “uninformative” bug report that
is also classified as “uninformative”

– False Negative : an “informative” bug report that
is classified as “uninformative”

– Accuracy : a standard metric measuring the cor-
rectness of the classification results.

Accuracy =
|true positives|+ |true nagatives|
the totaly number of instances

(18)

– Precision : a standard metric measuring the use-
fulness of the classification results.

Precision =
|true positives|

|true positives|+ |false positives|
(19)

– Recall : a standard metric measuring the complete-
ness of the classification results.

Recall =
|true positives|

|true positives|+ |false negatives|
(20)

– F-Measure : a standard metric combining both Pre-
cision and Recall to measure the classification per-
formance.

F −Measure = (1 + β) · Precision ·Recall
β2 · Precision+Recall

(21)

When we give equal weights to Precision and Re-
call by setting β = 1, we have F1-Measure that is
called the harmonic mean of Precision and Recall.

When we give more weights to Precision by setting
β = 0.5, we have F0.5-Measure that considers
Precision is more important.

– Mean Average Precision (MAP): a standard
metric measuring the overall ranking performance
of an IR system (Manning et al, 2008). It is de-
fined as the mean of the average precision overall
queries. MAP is widely used in measuring the rank-
ing performance of IR-based bug locating systems
(Huo and Li, 2017; Huo et al, 2016; Lam et al, 2015;
Saha et al, 2013; Ye et al, 2014, 2016; Zhou et al,
2012).

– Mean Reciprocal Rank (MRR): a metric mea-
suring the ranking performance of an IR system on
the first recommendation (Voorhees, 1999).

In order to determine the effects of the bug report
classification, we utilized Accuracy, Precision, Recall,
F1-Measure, and F0.5-Measure. To calculate the effects
of the IR method, we utilized MAP and MRR.

7.5 Training the Neural Network Models

max_epochs = 500
patience = 10
best_accuracy = 0
prior_accuracy = 0
for(epoch = 0; epoch < max_epoch; epoch++):

train the model over all the batches in one cycle
run the model on the validation set
if Accuracy > best_accuracy:

best_accuracy = Accuracy
test the model on the testing set
patience = 10

else if Accuracy > prior_accuracy:
patience = 10

else:
patience = patience - 1
if patience < 0:

return the testing results
prior_accuracy = Accuracy

test the model on the testing set
return the testing results

Fig. 5: The training and testing procedure.
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Table 3: Classification results of using difference models: MLP refers to the multilayer perceptron model, and NC
(No Classification) refers to classifying all the instances (bug reports) as positive (“informative”).

Project Metric LSTM CNN MLP NC

Eclipse Accuracy 0.670 0.650 0.645 0.658
Platform Precision 0.703 0.672 0.676 0.658

UI Recall 0.862 0.901 0.884 1
F1-Measure 0.775 0.770 0.766 0.794
F0.5-Measure 0.730 0.708 0.709 0.706

SWT Accuracy 0.694 0.685 0.692 0.692
Precision 0.694 0.698 0.692 0.692
Recall 1 0.963 0.884 1

F1-Measure 0.819 0.809 0.783 0.818
F0.5-Measure 0.739 0.738 0.738 0.738

JDT Accuracy 0.763 0.747 0.710 0.759
Precision 0.762 0.761 0.758 0.759
Recall 1 0.971 0.908 1

F1-Measure 0.865 0.853 0.823 0.863
F0.5-Measure 0.8 0.796 0.784 0.797

As discussed in Section 3.4, the neural network models
(LSTM-network, CNN, and multilayer perceptron) are
trained over a maximum of 500 epochs with an early
stopping criterion.

The descriptions of the training and testing process
are shown in figure 5. Once the models are trained in
every era, we check and monitor the performance of
the validation dataset models. When the validation ac-
curacy is steadily decreased over Ten times, we consider
that the models are converged, and the training phase
ends. Finally, we finalize the testing results if the mod-
els achieve the optimal validation accuracy. In Table 1,
present the testing results based on the testing dataset,
which are utilized as features 10, 11, and 12.

7.6 Tuning the Hyperparameters

We tune models’ hyperparameters on the validation
dataset using the same procedure as shown in Figure 5
but without testing on the testing set.

– LSTM-network, the number of hidden units in the
memory cell is set to 32, the dropout rate on the
input layer is 0.9, the output dropout rate is 0.7,
and the learning rate 0.003.

– CNN, the first convolutional layer uses eight filters
with size 5x5. The second convolutional layer uses
sixteen 5x5 filters. The pooling size is 2x2. The fan-
out of the first fully connected layer is 512.

– Multilayer perceptron, all three hidden layers use
500 internal nodes.

– The learning rates for both CNN and perceptron are
0.001. The training batch size for these three models
are all set to 64.

– SVM, KNN, Decision Tree, and Naive Bayes, we
train these classifiers on the training dataset and
tune their hyperparameters on the validation dataset
as well.

7.7 Results and Analysis

The remainder of this section describes the findings of
the study and answering our four research questions.

RQ1: Can using only the neural network models
help filter out “uninformative” bug reports?
RQ2: What is the difference between using different
neural network models?
RQ3: Can using both the explicit features and the
implicit features (neural-network features) help fil-
ter out “uninformative” bug reports?
RQ4: What is the performance of our proposed
classification approach in the task of bug localiza-
tion?

7.7.1 RQ1: Can using only the neural network
models help filter out “uninformative” bug
reports?

In order to address the RQ1, we have three projects
using a variety of neural network models. The results
are given in Table 3, where the outcomes of the model
for each project are presented in the table column.

The findings provide us with the following observa-
tions: (1) in comparison to not classifying bug reports,
and it helps filter out the “uninformative” bug reports
when utilizing the LSTM method (when the precision
raises). (2) When the LSTM network raises the pre-
cision of the classification, it decreases the recall. It
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leads to a decrease in the false positives; however, it
is also decreasing the true positives. (3) Utilizing the
LSTM network, F0.5-measure can be increased while
F1-measure could be declined. In terms of the impor-
tance of precision and recall, LSTM can not be benefi-
cial. Nonetheless, if in case we choose precision rather
than recall under specific trade-off (F0,5-Measure), it is
beneficial to use LSTM networks. (4) The performance
of the classification accomplish better when utilizing
LSTM-network the use of CNN and multilayer percep-
tron. It demonstrates that the acquired from LSTM
long term dependency helps evaluate the finding of the
usefulness of the bug report to IR-based bug locating.
(5) We also find that, in contrast with Eclipse UI, the
output gap between Eclipse SWT and Eclipse JDT is
small. It is maybe because we have a smaller training
and testing size, which could be one of the possible
reasons. Nonetheless, better precision is also provided
when F0.5-measure on these two projects is kept higher.

Summary. The LSTM-network shows better
results on the three benchmark projects, espe-
cially on Eclipse Platform UI. So, we answer
RQ1 that the LSTM-network approach helps
filter out “uninformative” bug reports under a
particular trade-off (F0.5-Measure) between re-
call.

7.7.2 RQ2: What is the difference between using
different neural network models?

As discussed in Section 3.3, a bug report is classified
into a category based on its categorical probabilities,
which are computed as output by the Softmax model.
That is, based on the output of Softmax, we classify
a report as “informative” when P (“informative′′) >

P (“uninformative′′) even the difference is marginal.
To further increase the classification precision, in-

stead of classifying a report to the category with larger
probability, we perform classification using a fixed value
as the threshold. That is, we classify a bug report as
“informative” if P (“informative′′) > threshold and
“uninformative” otherwise. We assume that the bigger
threshold, the more confidence of the model in classify-
ing a report as “informative”.

We run experiments using different neural network
models on the Eclipse Platform UI project by tuning
the probability threshold from 0 to 1. For comparison
purpose, we introduce a simple baseline approach that
classifies a bug report based on the length of its content
(summary and description). For the simple baseline ap-
proach, we tune the length as the threshold. Then we

draw a learning curve for each evaluation metric. The
learning curves are shown in Figure 6 for LSTM, Fig-
ure 7 for CNN, Figure 8 for multilayer perceptron, and
Figure 9 for the simple baseline approach. An overall
observation from the results is that the precision in-
creases when we increase the threshold, but the recall
drops. When we give more preference to precision, we
observe that the F0.5-Measure value also increases.

Fig. 6: Learning curves for LSTM.
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Fig. 7: Learning curves for CNN.

Fig. 8: Learning curves for multilayer perceptron.

Fig. 9: Learning curves for the simple baseline ap-
proach.

Fig. 10: Precision vs. Recall.

More specifically, take the LSTM result shown in
Figure 6. for example, both Precision and F0.5-Measure
increase with the probability threshold. When the thresh-
old is set to 0, which means no classifications at all, the
Precision is 0.658, and the F0.5-Measure is 0.706. After
we increase the threshold to 0.5, we obtain the Precision
of 0.703 and F0.5-Measure of 0.73. Then we continue to
increase the probability threshold. When the threshold
increases to 0.8, which means that we classify a bug re-
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port as “informative” only when P (“informative′′) >

0.8, the Precision also increases from 0.703 to 0.716,
and the F0.5-Measure increases from 0.73 to 0.735.

We examine Precision changes with the Recall changes
in Figure 10 in order to have a better understanding of
the variation between models, from which we discover
that the LSTM-network (RNN) model achieves higher
in Precision performance than other models before the
recall declines much further. We do note the increased
performance of CNN when the recall is more significant
than 0.5 and is low to be helpful.

Summary. We answer RQ2 that The LSTM
network, comparing with CNN and a multilayer
perceptron, can accomplish the strongest trade-
off between Precision and Recall.

7.7.3 RQ3: Can using both the explicit features
and the implicit features (neural-network
features) help filter out “uninformative” bug
reports?

Table 4 shows the classification results of using different
features, where “All Features SVM” means using all the
features shown in Table 1 and using SVM as the classi-
fier. These features include explicit features and implicit
(neural-network) features. We compared the results of
using all features, the results of using only the explicit
features, the results of using only the LSTM-network
feature, and the results of not doing classification.

As shown in Table 4, using all features achieve the
best Accuracy, Precision, F1-Measure, and F0.5-Measure
score for all three projects. Take Eclipse Platform UI;
for example, compared with not doing classification, us-
ing all features for bug report classification helps in-
crease Precision from 0.658 to 0.72, helps increase F1-
Measure from 0.794 to 0.81, and helps increase F0.5-
Measure from 0.706 to 0.88.

When using all features, we also evaluate the perfor-
mance of different classifiers. The results are shown in
Table 5. SVM and K-Nearest Neighbours (KNN) out-
perform Decision Tree and Naive Bayes. SVM achieves
better Recall and F-Measure scores. KNN achieves bet-
ter Precision.

Summary. Using both the explicit features and
the implicit features helps filter out “uninforma-
tive” bug reports. Using all features for bug re-
port classification achieves better Precision and
F-Measure score than not doing classification.

7.7.4 RQ4: What is the performance of our
proposed classification approach in the task of
bug localization?

We use our classification model with all features on bug
reports in the research data set to check whether our
method helps to enhance the IR-based bug locating sys-
tem LRWE, and we run the LRWE bug locator system
in only “informative” reports. Table 6 shows the com-
parison results with not doing bug report classification.
We observed a noticeable performance improvement in
terms of MAP and MRR over not classifying for all
three projects.

Summary. Our proposed classification ap-
proach, under the trade-off (F1-Measure and
F0.5-Measure) between Precision and Recall,
helps improve the IR-based bug location sys-
tem’s ranking performance.

8 Threats to Validity

In this section, we identify several threats to the validity
of our study.

Construct Threats. One of the main threats is
related to our dataset i.e., any mistake in the corre-
spondence between bug reports and their corresponding
fixed files would trigger errors in our classification. To
mitigate this issue, we did adopt our previous dataset
(Ye et al, 2014) because of its reliability and wide adop-
tion by the community (Ye et al, 2014, 2016; Zhou et al,
2012).

Also, any mistake with the labeling implementation
could be lethal to our work. To mitigate this, we have
randomly tested a few samples of automatically labeled
reports, and we reproduced the localization process,
and verified that the report is labeled informative if its
infected file(s) appear(s) in the top ranked candidates,
and uninformative otherwise.

Internal Threat. the internal threats are linked
to possible errors in the studies. We have reviewed our
developed code, but no faults can be identified.

Another main issue with our classification is the po-
tential over-fitting of our model. Our approach evalua-
tion does not only rely on precision and recall, which
are not good indicators of such phnomenon, but also we
have tested our model in a more practical aspect by val-
idating the accuracy of localizers when being fed with
informative reports. So our model evaluation mainly re-
lies on the performance of these localizers, which is not
sensitive to over-fitting.
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Table 4: Classification results of using different features and using SVM as the classifier: All Features refers to
using both the explicit and implicit (neural-network) features, and NC (No Classification) refers to classifying all
the instances (bug reports) as positive (“informative”).

Project Metric All Features Explicit Features LSTM NC
SVM SVM

Eclipse Accuracy 0.71 0.665 0.670 0.658
Platform Precision 0.72 0.672 0.703 0.658

UI Recall 0.93 0.960 0.862 1
F1-Measure 0.81 0.790 0.775 0.794
F0.5-Measure 0.88 0.884 0.730 0.706

SWT Accuracy 0.736 0.714 0.694 0.692
Precision 0.743 0.748 0.694 0.692
Recall 0.951 0.891 1 1

F1-Measure 0.834 0.813 0.819 0.818
F0.5-Measure 0.9 0.858 0.739 0.738

JDT Accuracy 0.78 0.769 0.763 0.759
Precision 0.777 0.768 0.762 0.759
Recall 1 0.997 1 1

F1-Measure 0.88 0.868 0.865 0.863
F0.5-Measure 0.944 0.941 0.8 0.797

Table 5: Classification results of using SVM and difference features: All Features refers to using both the explicit
and implicit (neural-network) features, and NC (No Classification) refers to classifying all the instances (bug
reports) as positive (“informative”).

Project Metric All Features All Features All Features All Features
SVM KNN Decision Tree Naive Bayes

Eclipse Accuracy 0.71 0.726 0.679 0.661
Platform Precision 0.72 0.754 0.708 0.704

UI Recall 0.93 0.867 0.872 0.836
F1-Measure 0.81 0.806 0.781 0.764
F0.5-Measure 0.88 0.841 0.834 0.806

SWT Accuracy 0.736 0.748 0.719 0.694
Precision 0.743 0.765 0.735 0.732
Recall 0.951 0.923 0.934 0.887

F1-Measure 0.834 0.836 0.823 0.802
F0.5-Measure 0.9 0.886 0.886 0.851

JDT Accuracy 0.78 0.786 0.775 0.742
Precision 0.777 0.795 0.78 0.778
Recall 1 0.967 0.98 0.925

F1-Measure 0.88 0.873 0.869 0.845
F0.5-Measure 0.944 0.927 0.932 0.891

Conclusion. Our conclusions are based on metrics
as evaluation scales often used in bug location, we used
MAP, and MRR to evaluate bug location efficiency. Be-
sides, these metrics are heavily used in previous studies
related to bug localization and assignment (Huo and
Li, 2017; Huo et al, 2016; Lam et al, 2015; Saha et al,
2013; Ye et al, 2014, 2016; Zhou et al, 2012).

External Threat. external validity threats apply
to our observations being generalized. More than 9,000
bug reports from open-source projects (Ye et al, 2016)
Eclipse UI, SWT, and JDT are included in our ex-
periments. Studies in these datasets demonstrate that
our model works best when it integrates all knowledge
based on interaction and location. We performed across
project training and testing, and we were able to de-

velop a model that is project agnostic. This is in favor
of the generazibility of our approach. However, it would
be interesting to validate in the future, on whether us-
ing one single project for designing the classifier would
potentially give better results, since projects tend to
have their own characteristics that can be relevant for
one project and irrelevant for another one.

Further, We aim in the future by expanding the
number of projects and the size of bug reports with
different programming languages than Java in order to
minimize such risks to external validity.
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Table 6: Bug locating results: NC (No Classification) refers to classifying all the instances (bug reports) as positive
(“informative”).

Project Metric All Features All Features NC
SVM KNN

Eclipse MAP 0.434 0.462 0.369
Platform MRR 0.488 0.515 0.419

UI F1-Measure 0.81 0.806 0.794
F0.5-Measure 0.88 0.841 0.706

SWT MAP 0.456 0.464 0.382
MRR 0.528 0.537 0.443

F1-Measure 0.834 0.836 0.818
F0.5-Measure 0.9 0.886 0.738

JDT MAP 0.443 0.453 0.425
MRR 0.527 0.541 0.516

F1-Measure 0.88 0.873 0.863
F0.5-Measure 0.944 0.927 0.797

9 Related Work

In this section, we present related work on different
aspects of bug localization. We discuss four areas of
related studies, which are IR-based bug localization,
other uses of neural networks in software engineering,
and briefly touch on non-IR-based bug localization ap-
proaches to bug reports and other related studies.

9.1 IR-Based Bug Localization:

Several IR-based bug localizing methods have been sug-
gested using information retrieval techniques to refor-
mulate queries (Chaparro et al, 2019; Rahman and Roy,
2018; Koyuncu et al, 2019), improve the performance
of bug localization (Lee et al, 2018; Tantithamthavorn
et al, 2018), the relation between bug report and source
code (Khatiwada et al, 2018; Le et al, 2017) and clus-
tering bug report and program elements (Hoang et al,
2018).

Lam et al (2015) performed an empirical study to
improve bug report handling by automating the task of
associating buggy files with a bug report. The authors
combined rSVM information retrieval with deep neu-
ral networks to associate terms in bug reports to terms
in source files. Their model can recommend source code
files containing the bug mentioned in a bug report. Huo
and Li (2017); Huo et al (2016) recommended multiple
methods suggested in a bug report to find faulty source
files. The authors proposed a novel convolutional neu-
ral network NP-CNN that leverages the structural in-
formation of source code in addition to the lexical in-
formation to accomplish this task. They followed with
another model LS-CNN that combines CNN and LSTM
to utilize the sequential information of source code ad-
ditionally.

Ye et al (2016, 2014) Built an learning-to-rank model
to combine multiple features in the ranking of source
files for bug reports. iThe model can be trained by uti-
lizing source code files, API code details, bug history,
and code change historical information from bug re-
ports that have already been resolved.

Zhou et al (2012) proposed a BugLocator that used
an IR-Based technique for ranking the files that show
similarity in the textual between source code and bug
reports utilizing rSVM. Saha et al (2013) outperforms
BugLocator with BLUiR that uses structural informa-
tion of code to enable more accurate bug localization.

Kim et al (2013) Present an approach that recom-
mends files where a bug is most possibly resolved based
on the quality of the bug report. In order to improve
localization accuracy, they added an initial phase where
bug reports are classified as informative or deficient
based on a prediction history of resolved bug reports.

Lukins et al (2010) applied an LDA technique that
is accurate and scaleable for automatic bug localization.
Nguyen et al (2011) proposed an automated approach
that assists developers to reduce the effects. They per-
formed their approach by narrowing the search space of
bug files. They developed LDA techniques to represent
technical aspects in the content of both documents bug
reports and source files.

Rao and Kak (2011) compared five IR-Based models
for bug localization. The models are VSM, LSA, UM,
CBDM, and LDA. Their results show that the more
complex models (LDA, LSA, CBDM) have not outper-
formed simpler text models suhc as (UM, VSM) for bug
localization.
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9.2 Using Neural Networks to Support Software
Engineering

Effort estimation is necessary for planning and man-
aging a software project. Choetkiertikul et al (2018)
utilized deep learning with long short-term memory
and recurrent highway network to facilitate effort es-
timation for agile projects. They used deep learning to
model and predict estimations of story points, a unit
of measure for the effort to complete a user story, or
resolve an issue.

Developers often need to utilize APIs to implement
functionality, but it can be a significant obstacle to deal
with unfamiliar libraries or frameworks. Gu et al (2016)
utilized RNN Encoder-Decoder for a deep learning ap-
proach called DeepAPI. DeepAPI allows a natural lan-
guage query to accurately generate a relevant API se-
quence.

Online developer forums are full of individual units
of programmer knowledge that have the potential to be
linked for being related, duplicates, etc. Xu et al (2016)
utilized word embeddings and convolutional neural net-
works for a deep learning. Their study is based on the
approach to semantically linking knowledge units on
StackOverflow that outperformed traditional methods.
Fu and Menzies (2017) followed up this approach with a
differential evolution approach that achieves similar re-
sults on the scale of minutes rather than hours with the
deep learning approach. They showed that deep learn-
ing may provide benefits for software engineering, but
simpler or faster methods should still be considered.

9.3 Non-IR-Based Bug Localization

Information retrieval approaches are not the only way
to try handling bug reports. Some approaches are not
IR-based or augment/combine with IR to accomplish
bug report handling tasks. Cleve and Zeller (2005) fo-
cused on cause transitions to find locations of defects.
Dit et al (2013) utilized web mining algorithms to an-
alyze execution information. Poshyvanyk et al (2013,
2007) have utilized both Formal Concept Analysis and
scenario-based probabilistic ranking of events. Liu et al
(2005) used a model based on pattern evaluation be-
tween correct and incorrect runs to quantify bug-relevance.
Jin and Orso (2013) used synthesized passing and fail-
ing executions to perform fault localization. Le et al
(2015); B. Le et al (2016) utilized approaches to pro-
gram spectra analysis to find suspicious words and in-
variant mining. Jones and Harrold (2005) implemented
Tarantula approach of generating likelihood/suspicion
for each statement of source code using the code entities
executed bypassing and failing test cases.

9.4 Other Related Studies.

Bug Severity. Determining the severity of bug reports
automatically is another area where handling of bug
reports can be improved. Lamkanfi et al (2010) used
a Naïve Bayes based approach to investigate if sever-
ity can be accurately predicted. They concluded that a
sufficient training set can achieve reasonable prediction
accuracy. Zhang et al (2016) described a system to find
similar historical bug reports utilizing a modified REP
algorithm and K-Nearest Neighbor. Then, an improved
performance severity prediction algorithm was devel-
oped with the extracted features of the bug reports.

Bug Triage. Another direction for reducing the ef-
fort of handling bug reports is to automate triage of bug
reports to the developer(s) that are likely to resolve
them. Anvik et al (2006); Anvik and Murphy (2011)
used support vector machines and other machine learn-
ing approaches to implement developer recommending
models achieving varying degrees of precision. Hu et al
(2014) implemented a recommendation method called
Bug Fixer that utilizes historical information of source
code components where developers have fixed bugs pre-
viously. Zhang and Lee (2013) implemented a hybrid
system that utilizes the unigram model to find similar
bug reports and then recommends a developer based
on the developer’s probability to fix and a model of
the developer’s activity and experience. Bhattacharya
et al (2012) studied a variety of machine learning tools
and graphs that used to assign bugs reliably to develop-
ers. Xuan et al (2015) utilized an instance and feature
selection model defined by historical bug datasets to
decrease system size and increase bug triage accuracy.
Shokripour et al (2013) used an approach that used
noun extraction and simple term weighting to predict
bug location and then used a location-based approach
to recommend assignment of the bug to a developer.

10 Conclusions and Future Work

This paper presents an approach that includes both
explicit and implicit features learned from neural net-
work models to classify a bug report as “informative”
or “uninformative”. Although a “informative” report is
considered to be useful for detecting the bug for an
IR-based bug location system, it is considered that an
“uninformative” report for an IR system does not sup-
port and is discarded. The results of the evaluation
indicate that our proposed classification model leads
to filtering “uninformative” reports and enhances the
ranking efficiency of a state of the art IR system in
software bugs localization. The LSTM network delivers
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better f-measurements than CNN and multi-layer per-
ceptrons among different neural network models. With
both explicit and implicit features, precision and F-
measurement produce the best results compared to ex-
plicit features, with only the LSTM feature and not
classified. We concluded that we could make a bet-
ter tradeoff between precision and Recall by filtering
out “uninformative” reports. In addition, our classifica-
tion model improves the performance of bug localiza-
tion tasks in that MAP and MRR, particularly in cases
where precision is more critical than Recall.

For future research, further IR-based bug location
systems on more software projects would be used to
test the efficacy of our approach. Meanwhile, we plan to
investigate alternative methods for translating bug re-
ports into vector representations such as sent2vec (Pagliar-
dini et al, 2017). Also, we intend to review numerous
bug reports manually in order to have an overview on
what kind of quality that makes an IR system useful.
We aim to build features that reflect the quality of bug
reports effectively and merge them with both the neural
network-based features for accurate classification.
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