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a b s t r a c t

Contemporary software development is distributed and characterized by high dynamics with continu-
ous and frequent changes to fix defects, add new user requirements or adapt to other environmental
changes. To manage such changes and ensure software quality, modern code review is broadly adopted
as a common and effective practice. Yet several open-source as well as commercial software projects
have adopted peer code review as a crucial practice to ensure the quality of their software products
using modern tool-based code review. Nevertheless, the selection of peer reviewers is still merely a
manual and hard task especially with the growing size of distributed development teams. Indeed, it
has been proven that inappropriate peer reviewers selection can consume more time and effort from
both developers and reviewers and increase the development costs and time to market. To address
this problem, we introduce a multi-objective search-based approach, named WhoReview, to find the
optimal set of peer reviewers for code changes. We use the Indicator-Based Evolutionary Algorithm
(IBEA) to find the best set of code reviewers that are (1) most experienced with the code change to be
reviewed, while (2) considering their current workload, i.e., the number of open code reviews they are
working on. We conduct an empirical study on 4 long-lived open source software projects to evaluate
our approach. The obtained results show that WhoReview outperforms state-of-the-art approach by
an average precision of 68% and recall of 77%. Moreover, we deployed our approach in an industrial
context and evaluated it qualitatively from developers perspective. Results show the effectiveness of
our approach with a high acceptance ratio in identifying relevant reviewers.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Modern Code Review (MCR) [1,2] is becoming a broadly
dopted software engineering practice in both commercial and
pen-source software (OSS) projects. Code review [3,4] is defined
s the process of reviewing other developers’ code to ensure soft-
are quality, and find potential problems in their code changes
efore they are merged with the codebase. MCR derives from the
ormal and disciplined process of software inspection [5], which
equires synchronous face-to-face meetings among developers to
ake a checklist-based code inspection and interactive discus-
ion. Conversely, MCR provides practitioners with a convenient
nvironment to read and discuss code changes and makes this
ctivity lightweight, less formal and asynchronous through a tool
pecialized support for geographically distributed code review [1,
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568-4946/© 2020 Elsevier B.V. All rights reserved.
6]. There is an increasing number of available MCR platforms
including Gerrit [7], ReviewBoard [8], and Phabricator [9].

Although existing MCR platforms provide effective and valu-
able support to automate the review process, a considerable
human effort is still involved. Hence, in typical software projects,
developers who submit code changes face the regular challenge
of identifying peer code reviewers to check their changes for
quality assurance. Such selection is mainly based on the reviewers
expertise with the specific modified files in the code change as
well as previous review collaborations [3,10,11]. One of the main
limitations in MCR tools is that reviewers assignment is still a
manual task, and there are no awareness mechanisms to find
and automatically assign adequate reviewers when code changes
are submitted for review. Prior works demonstrated that bad
reviewers assignment negatively impacts the review process and
software quality [11–13].

Finding and assigning suitable code reviewers is a non-trivial

decision-making task in software engineering involving several
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onsiderations. As code changes can affect many sub-modules
nd/or files in a software project, then typically the review in-
olves several reviewers of each affected module or file. More-
ver, in typical software projects, source code files are generally
dited by several developers, and reviewed by several reviewers.
t the same time, developers and reviewers could be assigned to
ifferent software engineering tasks with different workloads. It
s thus more difficult to identify suitable peer reviewers especially
hen the number of changed modules/files is considerable and
eviewers are becoming overloaded with different open code
eviews.

Automating the code reviewers selection process is an essen-
ial task. It decreases the lead time for a review; and balances
he workload onto a more comprehensive set of developers. An
utomated approach would also allow an increase in the number
f potential reviewers.
Various approaches have recently been proposed to leverage

he rich MCR data in order to ensure support to the code review
rocess. GitHub Enterprise Cloud recently adopted a simplified
ound robin-based algorithm to assign reviewers [14] based on
ho has received the least recent review request regardless their
xpertise. Other existing approaches rely on the expertise with
he code fragments being reviewed to identify potential review-
rs [10,11,13,15–18]. Moreover, various empirical studies showed
hat reviewers complete code reviews faster and share quality
eedback with the author when reviewers already have knowl-
dge and experience with the code and the project [1,6,19].
urthermore, since code review is, in essence, a human-centric
rocess, the personal and socio-technical aspects play an ex-
remely important role in identifying peer code reviewers as
ointed out by several researchers [3,10,12,20,21]. However, most
f these existing studies have tackled the problem of reviewers
ecommendation from a single perspective, e.g., reviewers exper-
ise and/or socio-technical aspects while ignoring an important
actor which is the reviewers workload. That is, reviewers are
ssigned regardless of the number of outstanding reviews they
urrently have. As a consequence, such reviewers recommenda-
ion systems oftentimes involve a large number of reviews to a
mall set of reviewers (e.g., 80% of the reviews in a project are
eviewed by 20% of the developers) as pointed out by Asthana
t al. [11] in their study with Microsoft. Thus, a better assign-
ent of reviews across available reviewers is crucial for effective

ecommendation systems for MCR to balance the workload onto
more comprehensive set of reviewers.
To address this issue, we propose a novel approach, named
hoReview, that formulates the problem of code reviewers iden-

ification as a multi-objective search based problem to identify
he set of appropriate developers while (1) maximizing the ex-
ertise of the recommended reviewers with the changed files,
nd (2) better managing the workload of reviewers by providing
better distribution of code reviews across available reviewers.
ur proposed approach, WhoReview, adopts the indicator-based
volutionary algorithm (IBEA) [22] to find the best trade-off be-
ween the reviewers expertise and collaboration and the review-
rs workload. Various parameters are involved when adopting
ny multi-objective evolutionary algorithms, such as IBEA, in-
luding the solution encoding, change operators rates such as
rossover and mutation, the size of the initial population, the
umber of iterations, etc. In particular, we build on top of our pre-
ious research work [10] to formulate the code reviewers recom-
endation problem as a multi-objective search-based problem to

ncorporate the workload of reviewers as a new dimension in the
ecommendation process in addition to the reviewers expertise
nd their previous collaboration history.
We conduct an empirical study to evaluate WhoReview on a
enchmark of four long-lived OSS projects from diverse domains,
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OpenStack [23], LibreOffice [24], Android [25], and Qt [26]. The
empirical results show that WhoReview is efficient in recom-
mending peer reviewers. The statistical analysis of the results
shows that WhoReview performs better than four recent state-of-
the-art approaches [10,13,16,27]. Moreover, we conduct a quali-
tative industrial case study to evaluate our approach with two
large projects with our industrial partner. The results show that
WhoReview provides more relevant reviewers recommendations
compared to baseline techniques.

This paper extends our previous research work, RevRec [10],
published in the 32nd IEEE International Conference on Software
Maintenance and Evolution (ICSME), in the following ways:

• We extend our single objective approach [10] into a novel
multi-objective search-based formulation, namely WhoRe-
view, that adopts indicator-based evolutionary algorithm
(IBEA) to balance reviewers expertise and workload.

• We conduct an extensive empirical study on a benchmark1
of 157,467 code reviews [28] from four OSS projects to eval-
uate the implementation of our WhoReview approach with
different state-of-the-art techniques. The statistical analy-
sis of the experimental results indicates that WhoReview
can correctly recommend code reviewers wit an average
precision of 68% and recall of 77%.

• We deploy our approach in an industrial context and qual-
itatively evaluate it from developer’s perspective and com-
pare it with baseline approaches. The obtained results show
that our WhoReview approach is adequate with software
developers needs and provides relevant peer reviewers rec-
ommendations.

The remainder of the paper is structured as follows. Section 2
ives an overview of MCR and summarizes the related work.
ection 3 describes our approach, WhoReview, that formulate the
ode reviewers recommendation problem as a multi-objective
earch based optimization. Section 4 reports and discusses the
esults of our experiments to evaluate WhoReview. Section 5
escribes potential threats to validity and Section 6 draws our
onclusions.

. Background and related work

This section describes the MCR process, and the reviews the
elated work.

.1. Modern code review

Fig. 1 shows an abstraction of the key code review activities
hat take place in a Modern Code Review (i.e., MCR) setting. Open
ource Software (OSS) projects utilize online collaboration tooling
uch as Gerrit [7] to coordinate code review activities. For in-
tance, OpenStack [23] has integrated Gerrit into their developer
orkflow [29]. Below, we highlight the three main steps in the
ode review process and the key activities.

1. Request–Review: First, the authors request for their new
code changes (i.e., patch) to be reviewed. The assignment
is completed once an appropriate set of reviewers are
assigned to the review.

2. Review–Revision: Once the review is assigned, reviewers
will discuss and make comments on the submitted patch.
In cases where there is rework needed, the feedback is sent
back to the author. The author will then revise the submit-
ted code change by making the appropriate changes based
on the discussions of the reviewers. This cycle between
review and revision may last several iterations.

1 https://kin-y.github.io/miningReviewRepo.

https://kin-y.github.io/miningReviewRepo
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Fig. 1. The code review process showing key activities.

3. Review–Decision: Once there is a final consensus on the
review and all discussions and revisions are satisfied, the
review–decision is made. The end result is either a merged
patch in the existing codebase or abandonment of the
patch. During this step, there will be testing of the patch
to ensure successful integration.

For instance, Fig. 2 shows an illustrative example of a code
review from the Eclipse project2 using the Gerrit code review
latform. This code review involves a total of 9 changes files
ubmitted by ‘‘Bob’’ and reviewed by four reviewers (‘‘Paul’’,
‘Jonathan’’, ‘‘Andrew’’, and ‘‘Daniel’’) as well as an automated
ot (‘‘CI bot’’). Finally, the reviewer ‘‘Jonathan’’ has voted ‘‘+2’’ to
pprove the code change and merge it into the code base.
In this study, we are interested in maintaining the efficiency

f the code review process, especially targeting the assignment
f reviewers, as shown in step 2. Finding the right reviewers is
ot trivial, especially in large diverse OSS teams that collaborate
n a voluntary basis. The main reason is that usually the most
xpert reviewer is currently assigned to other open reviews that
ave not reached a decision, which significantly increases her/his
orkload.

.2. Related work

Related work involves (i) factors influencing the code review
process, and (ii) reviewer recommendation methods.

Peer code reviewers algorithms and implementations. Bal-
chandran [27] was one of the first researchers to motivate the
se of the ReviewBot tool, as a recommendation system to im-
rove the review quality in an industrial context while consid-
ring the human effort, where formal in-person meetings are
ot possible. While Balachandran attempted to reduce the hu-
an effort, his approach considered mainly automated static
ode analysis and ignored the workload of reviewers. Patanamon
t al. [13] designed RevFinder, to assist in the selection of review-
rs in MCR based on the history of revised files to find the most
xperienced reviewer. Later, Zanjani et al. [16] introduced cHRev
s an automated approach to recommend peer reviewers for MCR
ased on the expertise of the reviewers, extracted from historical
eview data. The built model leverages the number of review
omments along with their time span. Xia et al. [15] proposed,
ie, a hybrid and incremental approach based on text mining and
ile location to find reviewers having experience with the files or
imilar files being reviewed. Fejzer et al. [17] proposed a selection
ethod based on the profiles of individual developers. The profile
orresponds to a multi-set of all file path tokens identified in the
hange commits that she/he reviewed which will be updated with

2 https://git.eclipse.org/r/c/tracecompass/org.eclipse.tracecompass/+/78803,
or privacy reasons, we have hidden some details from the interface, and used
lias instead of the original developer names and emails.
 a

3

new reviews. The approach uses a similar approach to [13] to
calculate the similarity between available profiles and changed
files in a submitted code change. Kim et al. [30] introduced an
approach based on latent Dirichlet allocation based on reviewer
expertise to identify reviewers. Reviewers expertise is based on
the code change topics extracted from the project’s review his-
tory. However, these existing techniques tend to be based mainly
on the reviewers expertise while ignoring the workload.

Recently, Asthana et al. [11] used the concept of hybrid rec-
ommendation and load balancing. The authors have conducted an
online evaluation at Microsoft and showed that efficient recom-
mendation brings several advantages including the reduction of
reviews completion time, the total number of reviewers per code
review, and the reviewers active load. Ouni et al. [10] introduced
RevRec, a search based approach using a single-objective genetic
algorithm to identify peer reviewers based on their expertise and
their social collaboration network. While Ouni et al.’s approach
demonstrated that search-based techniques provide an efficient
way to identify relevant reviewers, it only considers the review
problem from a single perspective while ignoring the workload
of the reviewers. Besides code review, other approaches focused
on the recommendation of appropriate developers for different
software engineering tasks. Anvik et al. [31] applied machine
learning algorithms to the problem of developers assignment to
bug reports. Later, Xia et al. [32] proposed an automated ap-
proach to assign developers to resolve bugs based on developers
information. However, these recommendation methods have not
been without critic, with Kovalenko et al. [6] arguing that the
next generation of recommendation tools must include more
user-centric approaches.

For the sake of clarity, we summarize in Table 1 the existent
approaches for peer reviewer recommendation approaches.

Factors influencing the code review process. Ruangwan et al.
33] showed that human aspects are of crucial considerations
n the review process. Baysal et al. conducted various studies
o assess non-technical and human factors in MCR. Their key
indings suggest that (1) organizational, personal and participa-
ion dimensions have an impact on the review process [12,34],
nd (2) the review process can be sensitive due to its innate
ature to deal with people’s characters and egos [35]. Moreover,
ther works advocate the importance of developers reputation to
eceive a faster first review response and feedback [3,36]. Other
tudies have shown that there is an interdependence between
eviews, aiding in the assignment of the best reviewer [37].
bert et al. [38] later showed how human factors play a role
n confusion during the review. More recent work observed a
ositive relationship between patch authors and their reviewers
oes play a role in the reviewer accepting a proposed patch [39].
t is widely accepted that code review is a hard process that
nvolves different socio-personal aspects [3,12,34,38,40]. Indeed,
istorically, Fagan introduced the software inspection concept as
systematic and disciplined peer review process for software
uality assurance [41]. Moreover, to better analysis MCR prac-
ices, in OSS projects in which developers basically participate in
ode review in a volunteer basis, a number of empirical studies
ound that a number of human and socio-technical factors do
nfluence the peer review process in OSS, advocating the need for
ore automated support to the review process through reviewers

ecommendation systems [3,12,19,20,42–44].

. Approach

This section describes our approach WhoReview for code re-
iewers recommendation using the indicator based evolutionary

lgorithm.

https://git.eclipse.org/r/c/tracecompass/org.eclipse.tracecompass/+/78803
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Fig. 2. An example of a code review from the Eclipse project using Gerrit.
able 1
summary of existent works for code reviewers recommendation.
Study Year Method User study

Balachandran [27] 2013 ReviewBot: static analysis to find reviewers who previously modified or reviewed Yes
the submitted sections of code.

Patanamon et al. [13] 2015 RevFinder: rank reviewers based on the history of revised files to find the most No
experienced reviewer.

Zanjani et al. [16] 2015 cHRev : find reviewers based on their expertise by leveraging the number No
of review comments along with their time span.

Xia et al. [15] 2015 Tie: a hybrid and incremental approach based on text mining and file location No
to find reviewers having experience with the files or similar files being reviewed.

Ouni et al. [10] 2016 RevRec: a search based approach to find reviewers based on their No
experience and social network.

Fejzer et al. [17] 2018 A selection method based on the profiles of individual developers by leveraging No
a multi-set of all file path tokens identified in the reviewer’s change commits.

Kim et al. [30] 2018 A latent Dirichlet allocation approach based on reviewer expertise to identify No
reviewers based on the code change topics extracted from the project’s review history.

Asthana et al. [11] 2019 WhoDo: A hybrid approach with scoring function to prioritize reviewers and balance load Yes
D

3.1. Approach overview

Fig. 3 depicts an overview of WhoReview. The input is a code
hange that is being submitted for review, which is composed
f a number of changed source code files (i.e., patch) committed
y a developer. It takes as input also the history of previous
nd current code reviews collected from the review platform in
hich the project is hosted, e.g., Gerrit.3 As output, WhoReview
eturns a set of most suitable reviewers to be assigned to review
code change. To search for the best set of candidate reviewers,
ur approach uses the indicator-based evolutionary algorithm
IBEA) [22]. The search algorithm evolves towards finding the
ptimal trade-off between two objectives (1) the reviewers ex-
ertise based on their experience with the source code files in

3 https://www.gerritcodereview.com/.
4

previous code reviews and the reviewers collaboration with the
developer who submitted the code change, and (2) the workload
of the currently recommended reviewers. In the next subsections,
we present the necessary details on the problem formulation and
explain how we adapted IBEA for the reviewers recommendation
problem in MCR.

3.2. Problem formulation

A typical software project S consists of a set of n developers,
= {d1, . . . , dn}, and set of m reviewers R = {r1, . . . , rm}, and a

set of q source code files, F = {f1, . . . , fq}. A source code change
C is performed by a developer d ∈ D. A code change comprises a
set of t changed files Fc = {fc1 , . . . , fct }.

Let Rc = {r1, . . . , rk} be a set of candidate reviewers for
the code change C . Each reviewer r has (1) his own expertise
i

https://www.gerritcodereview.com/
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Fig. 3. An overview of the WhoReview approach.

with the files Fp, (2) his history of review collaborations with the
developer d and the reviewers Rc\ri, and (3) his current workload,
i.e., the number of open code reviews. In particular, we define
three models for the code review recommendation problem (1)
reviewers expertise model, (2) reviewers collaboration model,
and (3) reviewers workload model.

3.2.1. Reviewer Expertise (RE)
In a software project, each individual reviewer ri has a level

of expertise with each of the changed files Fc = {fc1 , . . . , fct }. The
expertise of a given reviewer ri with the code change files Fc is
enoted as E(ri, Fc) and calculated as follows:

(ri, Fc) =

∑
∀fcj∈Fc

Exp(ri, fcj ) (1)

here the function Exp(ri, fcj ) computes the expertise level of a
iven reviewer ri with the file fcj ∈ Fc . The value of Exp(ri, fcj )
s based on the history of previous reviews accomplished by ri
ased on the number of similar files that are reviewed using
he file path similarity [13,16,45]. For a pair of files, we consider
he Jaccard similarity between their path tokens, higher than a
hreshold of 40%, obtained using the camel case splitter.

We build our expertise model, RE, based on the review com-
ents (1) frequency, and (2) recency. The more and recent the
omments of the reviewers ri on the file f the more expertise
e has with [10,13,16]. Indeed, as expertise may change over
ime, we consider both reviews frequency and recency as primary
actors to capture the reviewers expertise. We thus define the
xp(ri, f ) as follows:

xp(ri, f ) =

∑
∀fi∈Jaccard(f )

frequency(ri, f ) × recency(ri, f ) (2)

here frequency(ri, f ) calculates the number of review comments
y the reviewer ri for the file f as well as the set its similar
iles, if any, having a Jaccard similarity [46] higher than a specific
hreshold value. The function recency(ri, f ) reflects the freshness
f the review comments and is calculated as the complement of
he number of days since the last comment of the reviewer ri to
he file f , normalized with respect to the total number of calendar
ays from the project’s creation.
To illustrate the expertise model, let us consider a simplified

xample of a developer, ‘‘Jean’’, who is a candidate reviewer to
eview the code change illustrated in Fig. 2. For sake of simplicity,
e suppose that (1) the code change involves only the file
rg/eclipse/tracecompass/analysis/timing/ui/views
segmentstore/table/SegmentStoreTableView.java, de-
oted as F, and (2) the project has started one year ago, i.e.,
65 days. Let ‘‘Jean’’ a candidate reviewer who has a review
xperience with various files in the project, as shown in Table 2.
The changed file, F, has a Jaccard similarity equals or higher

han 40% with 3 out of the 8 files from the review history
f Jean, F5, F6 and F8, based on Table 2. For example, Jean’s
5

Fig. 4. An illustrative example of the reviewer collaboration (RC) model.

eview recency with the file F5, SegmentStoreFatory.java,
ecency(Jean, F5) = 1 − 8/365 = 0.98, while the review fre-
quency, frequency(Jean, F5) = 27 . Then, based on Eq. (2), the
expertise of Jean with the file F is equal to the sum of frequency
multiplied by recency of the 3 files F5, F6 and F8, Exp(Jean, F ) =

7×0.98+2×0.69+9×0.99 = 173.37. Following the same way,
the experience could be calculated for multiple files involved in
a given code change.

Finally, the expertise, RE, of a (set of) reviewer(s) Rc with the
code change files Fc is calculated as follows:

RE(Rc, Fc) =

∑
∀ri∈Rc

E(ri, Fc)

|Rc |
(3)

where E(ri, Fc) is provided by Eq. (1).

.2.2. Reviewer Collaboration (RC)
In a software project, each individual reviewer ri have its

wn review collaboration (RC) record with (i) the developer who
ubmitted the code change C , and/or (ii) the rest of reviewers Rc \

i based on the reviews history. The review collaboration forms
social network among all contributors in the project which

ould be represented as a weighted, undirected graph G = (V , E).
he vertices V represent the contributors (i.e., code developers
nd reviewers), while the edges E express the strength of col-
aboration among them as a count of the number of interactions
n terms of the frequency of review comments during their co-
eviews history. For a code change C , the developer and potential
eviewers can be represented as a sub-graph Gc = (Vc, Ec) [10].
ur collaboration model is built on Gc based on two measures, (1)
he sub-graph connectivity, and (2) the sum of weights on the
dges (i.e., comments count). For a developer d, the RC score is
alculated as follows:

C(d, Rc) =
|Ec |

|Vc | × (|Vc | − 1)/2
×

∑
∀eci∈Ec

eci (4)

where the coefficient |Ec |
|Vc |×(|Vc |−1)/2 ∈ [0, 1] reflects the connectiv-

ity of the sub-graph (a value of 1 indicates higher connectivity, if
the graph is complete), and eci is the weight on the edge ei, i.e., the
total number of review comments exchanged among each pair of
contributors.

To illustrate the RC model, we consider the example shown in
Fig. 2, with the four reviewers, Paul, Jonathan, Andrew and Daniel,
denoted as Rc . The developer Bob, denoted as d, who submitted
the code change has prior collaboration with only Jonathan and
Paul. The collaboration among them forms the graph shown in
Fig. 4, where the edge weights indicate the total number of
review comments between two contributors. Then, the review
collaboration between Bob and the four reviewers is calculated
based on Eq. (4) as follows, RC(d, Rc) =

8
5×(5−1)/2 × (32 + 29 +

56 + 59 + 18 + 45 + 116 + 59) = 331.2. The more the graph is
connected and the weights on the edges are high, the more the
RC score is high.
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able 2
simplified example of the review experience of the reviewer ‘‘Jean’’.
ID File # of

comments
# of days
since last
change

F1 org/eclipse/tracecompass/internal/segmentstore/core/segmentHistoryTree/SegmentHistoryTree.java 6 20
F2 org/eclipse/tracecompass/internal/provisional/segmentstore/core/BasicSegment2.java 21 65
F3 org/eclipse/tracecompass/internal/provisional/segmentstore/core/ISegment2.java 32 2
F4 org/eclipse/tracecompass/internal/segmentstore/core/segmentHistoryTree/SegmentTreeNode.java 43 37
F5 org/eclipse/tracecompass/segmentstore/core/SegmentStoreFactory.java 27 8
F6 org/eclipse/tracecompass/segmentstore/core/ISegmentStore.java 2 112
F7 org.eclipse.jgit.junit/src/org/eclipse/jgit/junit/MockSystemReader.java 15 14
F8 org/eclipse/tracecompass/analysis/timing/ui/views/segmentstore/table/AbstractSegmentStoreTableView.java 9 2
Table 3
A simplified example of the review workload model.
File Average

review time

analysis/org.eclipse.tracecompass.analysis.timing.ui/icons/eview16/latency.png 1.2
analysis/org.eclipse.tracecompass.analysis.timing.ui/plugin.properties 7.8
analysis/org.eclipse.tracecompass.analysis.timing.ui/plugin.xml 3.5
org/eclipse/tracecompass/analysis/timing/ui/views/segmentstore/table/AbstractSegmentStoreTableView.java 4.9
org/eclipse/tracecompass/analysis/timing/ui/views/segmentstore/table/AbstractSegmentStoreTableViewer.java 13.4
org/eclipse/tracecompass/analysis/timing/ui/views/segmentstore/table/SegmentStoreTableView.java 7.2
org/eclipse/tracecompass/analysis/timing/ui/views/segmentstore/table/SegmentStoreTableViewer.java 4.5
org/eclipse/tracecompass/internal/analysis/timing/ui/views/segmentstore/table/messages.properties 2.8
org/eclipse/tracecompass/internal/analysis/timing/ui/views/segmentstore/table/Messages.java 4.1
c
i
a
l
w

3.2.3. Reviewer Workload (RW)
In addition to developers expertise and collaboration, each

eviewer in a project has her/his own workload that typically
hanges overtime based on the number of open reviews s/he is
orking on. Our RW model is primarily based on the number of
urrent open reviews. However, since not all code changes have
he same difficulty to review them, we also consider the notion
f code change size to better estimate the workload of reviewers.
hat is, the larger the code change size, the higher is the reviewer
orkload. Let, r a reviewer who has n open reviews for the code
hanges C = {c1, . . . , cn} assigned to her/him for review with
he status ‘‘open’’. The reviewer workload RW (r) is calculated as
ollows :

W (r) =

∑
∀ci∈C

size(ci) × load(ci) (5)

here size(ci) returns the size of the code change ci in terms of
he number of files modified. Since different files may require
ifferent workloads, we consider the history of code changes by
dding the weight function load(ci) that estimates the workload
equired to review the code change ci based on the average time
pent to review each file in ci in the project’s review history. If
file has no change history, it is then assigned a default weight
quals to 1. Let F = {f1, . . . , fm} be the set of files modified in the
ode change ci, the function load(c) is calculated as follows.

oad(c) =
1

| F |

∑
∀fi∈F

hist_time(fi)
max_time

(6)

where hist_time(fi) returns the average time, in terms of calendar
days, taken in all previously reviewed code changes involving
the file fi, and max_time is the time taken for the longest code
eview in the project history, after removing outlier values using
boxplot-based technique.
To illustrate the reviewer workload (RW) model, we consider

reviewer, Paul, who has 1 open code change c1 to be reviewed,
s shown in Fig. 2 from the Eclipse project. The size of code
hange size(c1) = 9 (i.e., the total number of changed files).
uppose that each file fi had an average review time in its history
ist_time(fi) as shown in Table 3, and that the longest review took
8 days. Then, load(c ) =

1
×( 1.2+7.8+3.5+4.9+13.4+7.2+4.5+2.8+4.1 ) =
1 9 48

6

0.11. Hence, based on Eq. (5), the workload of the reviewer Paul,
RW (Paul) = 9×0.11 = 0.99. Similarly to load(c1), if the reviewer
Paul has more than one open review, then his workload RW (Paul)
corresponds to the sum of the load of all open reviews.

The three models, RE, RC, and RW, aim at providing a general
picture on the code review process while shedding the light
on different aspects. Having reviewers with sufficient expertise
with the code change being reviewed is of paramount impor-
tance for quality review. The socio-technical factor and social
network among developers and reviewers are also crucial [4,10,
36,47]. Moreover, balancing the reviewers workload helps to bet-
ter distribute the number of reviews across all available reviewers
within a project. It also averts assigning an unfairly high workload
to a few number of active and experienced developers, who
have actively participated in multiple code reviews and regularly
committed to different parts of the project’s codebase [10,11].

3.3. IBEA adaptation

The generic nature of evolutionary algorithms, such as IBEA,
requires a specific adaptation to turn it into a domain-specific
algorithm. The adaptation is composed of 3 main elements: (i)
solution representation, (ii) solution evaluation, and (iii) solution
evolution.

3.3.1. Solution representation
A candidate solution to the reviewer recommendation prob-

lem, is a subset of reviewers, selected from all developers, cur-
rently actively contributing to the project. We encode the set of
reviewers using a vector of length n. Each dimension of the vector
ontains a selected potential reviewer, through a unique numer-
cal ID, identifying each reviewer. The vector length is variable,
s it represents the number of selected subset of reviewers. The
ength of a vector can change during the solution’s evolution,
ithin an upper threshold maxSize, previously determined as part

of the algorithm tuning, or chosen by the decision maker. The
reviewers order in the vector representation is not important.
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.3.2. Solution evaluation
Each candidate solution should be quantitatively evaluated via
fitness function. The fitness function is composed of one or
any objective functions that aim at quantifying how good is
ach individual, i.e., reviewers recommendation list, in a popula-
ion of solutions. To evaluate how good is each candidate solution,
.e., its fitness, we employ two objective functions to be optimized
1) the reviewers expertise and collaboration, and (2) the review-
rs current workload. An optimal solution is expected to provide
he optimal trade-off between both objective functions.

. Maximize reviewers expertise and collaboration (REC). In-
pired from [10], we use an expertise and collaboration model
hat combine both the history of previous reviews and the history
f collaboration between developers. Prior work has shown that
here is a high correlation and complementary between both
eviewers expertise and collaboration [10], so they should be
ggregated into one single objective function. For a candidate
olution, R, that consists of a set of n reviewers R = {r1, . . . , rn} to
eview a code change C submitted by a developer d, the reviewers
xpertise and collaboration is calculated as follows:

EC(R, C) = α × RE(R, F ) + β × RC(d, R) (7)

here the functions RE(R, F ), and RC(d, R) represent the review-
rs expertise and collaboration, as given by Eqs. (3) and (4),
espectively, and the weights α + β = 1. This objective function
hould be maximized

. Minimize reviewers work load. For a candidate solution, R =

r1, . . . , rn}, that consists of a set of n reviewers, the solution’s
orkload corresponds to the average workload value for each

ndividual reviewer ri. The workload is calculated as follows:

orkload(R) =

∑
∀ri∈R

RW (ri)

n
(8)

where RW (ri) calculates the current workload of the reviewer
ri and provided by Eq. (5). This objective function should be
minimized to assign more developers with low workload. Evolv-
ing towards the near-optimal trade-off between both review-
ers expertise and workload are the main drivers of the search
process.

Reviewers ranking list. Since IBEA returns a set of reviewer lists,
in the Pareto front, without raking, we employ a ranking tech-
nique that takes advantage of the optimal (i.e., non-dominated)
solutions returned by the algorithm. The final ranking of the
optimal recommended reviewers corresponds to the number of
occurrences of the reviewer ID in all the near-optimal solutions
returned in the Pareto front. The more a reviewer appears in the
non-dominated solutions, the more relevant s/he is.

3.3.3. Solution evolution
Any evolutionary algorithm relies on change operators to

evolve its solution(s). For instance, IBEA deploys the crossover
and mutation, to transition the solution’s phenotype into a prefer-
ably enhanced one. Practically, IBEA randomly initiate a popula-
tion of several vectors of random sizes. This population evolves
through crossover and mutation into a newer population whose
solutions are close to a near-optimal state, in comparison with
the solution of the previous population. The genetic operators,
used in this process, are detailed below:

Crossover is a binary recombination operator that takes as
input two parent solutions, and cross them over to produce
two offspring solutions. For the case of our problem adapta-
tion, the single random cut-point crossover is deployed. The
crossover process is initiated by randomly splitting each parent

into two sub-vectors. Afterward, the first offspring is constructed

7

by concatenating the left sub-vector of one parent with the right
sub-vector of the second parent, and vice versa for the second
offspring. To ensure the consistency of each solution, there are
pre and post conditions that need to be maintained. These con-
ditions are domain-specific. For instance, the two offsprings are
analyzed for consistency, and if a solution becomes inconsistent,
by containing two identical identification numbers, of the same
reviewer, issued from parent solutions, a repair operator removes
the duplicated reviewers.

As for the mutation operator, it is an unary operator that
generates an offspring by slightly altering a parent solution. Mu-
tation aims to explore mutated solutions of a given one, through
a slight change, unlike recombination operators which tend to
generate completely new solutions. For our problem, the muta-
tion operator randomly selects one dimension of the vector, i.e., a
reviewer, and substitutes its ID with another one from the given
search space. Practically, the mutation replaces one reviewer with
randomly chosen one from the pool of available reviewers in the
project. Similarly to crossover conditions, the chosen reviewer
should not belong to the current reviewers in the solution to
avoid redundancy.

4. Empirical evaluation

In this section, we report our experimental study to evaluate
the efficiency of WhoReview.

4.1. Research questions

Our experimental study aims at addressing the three main
research questions.

• RQ1. (SBSE validation). How effective is our WhoReview
approach in identifying appropriate reviewers?

• RQ2. (State-of-the-art comparison). How does WhoReview
compared to state-of-the-art code reviewers recommenda-
tion approaches?

• RQ3. (Industrial validation). How do software developers
evaluate our WhoReview in practice?

4.2. Studied projects

We conducted our empirical study on an existing benchmark4

of four large and long-lived OSS projects that were actively stud-
ied in the recent code review research literature [10,13,15,16,21,
28,48], Android [25], OpenStack [23], Qt [26], and LibreOffice [24].
Android is a popular and free software stack for mobile devices
developed by Google. OpenStack is a cloud computing software
platform for controlling large pools of computing power, storage,
and networking resources throughout a data-center, and mostly
deployed as an infrastructure-as-a-service (IaaS). Qt is a widget
toolkit for creating graphical user interfaces as well as cross-
platform applications that run on various software and hardware
platforms. Table 4 presents the statistics of the four systems in
terms of number of reviewed code changes, number of reviewers,
and number of files. All collected reviews are closed, i.e., having
a status either ‘‘Merged’’ or ‘‘Abandoned’’, and contain at least one
file.

4 https://kin-y.github.io/miningReviewRepo.

https://kin-y.github.io/miningReviewRepo
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able 4
tudied systems statistics.
System #Reviews #Reviewers #Files Av. files per review

Android 5126 94 26,840 8.26
OpenStack 6586 82 16,953 6.04
Qt 23,810 202 78,401 10.64
LibreOffice 6523 63 35,273 11.14

4.3. Evaluation method and metrics

The ultimate goal of RQ1 is to first evaluate the formulation
f our approach from an SBSE perspective by following Harman
nd Jones [49] guidelines. We compare the performance of IBEA
ith random search (RS) [50] to assess whether there is a need

or an intelligent search method to explore the search space of
ossible sets of reviewers among the available reviewers. Indeed,
S is the simplest form of search algorithms, which is known
s direct-search or derivative-free search. RS is unguided and
ften fails to find globally optimal solutions as it does not take
dvantage of the use of genetic operators to evolve the current
opulation [49,51–54].
Moreover, we use common performance metrics to com-

are the performance of IBEA against three widely-used multi-
bjective evolutionary search algorithms (MOEA), including the
on-dominated sorting genetic algorithm (NSGA-II) [55], the
trength Pareto Evolutionary Algorithm (SPEA2) [56], and the
ulti-objective evolutionary algorithm based on decomposition

MOEA/D) [57]. Our performance analysis is based on widely-
sed metrics in MOEAs as defined by Zitzler et al. [58]. These
erformance measures assess basically three different aspects (i)

the quality of the obtained Pareto fronts, (ii) the convergence
towards the Pareto front, and (iii) the diversity of the identified
optimal solutions. In particular, we study the four following
performance measures:

• Hypervolume (HV) [59]: it calculates the hypervolume of the
multi-dimensional objective space enclosed by a given front
and a fixed reference point r , usually the anti-optimal point
in space. HV evaluates how good is the approximate front
in achieving the optimization objectives. It captures both
convergence and diversity. Higher HV values are desirable.

• Generational Distance (GD) [60]: it calculates how far is the
approximation set S from the reference set RS, which rep-
resents a measure of error. GD is the mean value of the Eu-
clidean distance, in an n-dimensional space, between each
point in S and its nearest neighboring point in RS for a given
n objective space. GD = 0 indicates that all the elements
generated are in the Pareto-optimal set, i.e., the lower the
value of the GD, the better.

• Spacing (SP) [61]: it measures how well the non-dominated
solutions are distributed along the approximation front, as
the variance in the distance of the neighbors vectors in the
non-dominated vectors. The higher SP, the better.

• Contribution (IC) [62]: It measures the percentage of non-
dominated solutions that are in the Reference Front (RF ).
While IC depends on the number of obtained
non-dominated solutions, it penalizes an algorithm if it
generates ‘few but excellent’ solutions. The higher IC, the
better.

After evaluating our approach in terms of MOEAs performance,
t is important to evaluate its efficiency in solving the problem
t hand, i.e., peer code reviewers recommendation. We employ
hree widely-used performance evaluation metrics, precision, re-
all, and mean reciprocal rank (MRR) that are common in the
8

evaluation of code review and software engineering recommen-
dation systems [10,13,16,27,63].

For each code change c in the studied projects, let us consider
he following possible outcomes, True Positive (TP) represents the
top-k recommended reviewers by the tool that correctly belong
to the list of actual reviewers; False Positive (FP) represents the
number of top-k recommended reviewers that do not belong the
list of actual reviewers; False Negative (FN) is the number of
ctual reviewers, that do not belong to the list of top-k actual
eviewers. Based on these outcomes, precision, recall and MRR
re computed as follows:

recision@k =
TP

TP + FP
recall@k =

TP
TP + FN

(9)

We calculate both precision and recall measures with different
k values, k = {1, 3, 5, 10}. Moreover, we evaluate our approach in
terms of Mean Reciprocal Rank (MRR). Given a code change c , the
reciprocal rank corresponds to the multiplicative inverse of the
rank of the first true positive, i.e., correct, reviewer recommended
in a ranked list produced by a code reviewer recommendation
technique. Then, MRR corresponds to the average of the recipro-
cal ranks of a set of recommendations for a given code change.
Let R a reviewers recommendation list, then MRR is computed as
follows:

MMR =

∑
∀r∈R rank(r)

|R|
(10)

where rank(r) refers to the rank of the first correct peer reviewer
in the recommendation list. Higher MRR values indicate better
performance of a peer reviewers recommendation approach.

For the evaluation procedure, we consider the test review Tr
as the most recent 1000 reviews, for each project, in their chrono-
logical order. Then, for each Tri, we consider the list of actual
reviewers as the ground truth. Then we calculate our performance
measures, precision, recall and MRR.

To answer RQ2, we measure the efficiency of WhoReview as
ompared with recent state-of-the-art techniques, RevRec [10],
HRev [16], RevFinder [13], and ReviewBot [27]. Our compari-
on is based on the precision@k, recall@k and MRR as defined
y Eqs. (9) and (10), respectively. RevRec [10] uses a mono-
bjective search based approach to identify reviewers that are the
ost experienced and have previous collaborations. cHRev [16]
ses reviewers expertise from previous reviews based on the
eview comments frequency and recency. RevFinder [13] used
n expertise model based on similar file paths of previous re-
iews. ReviewBot [27] constructs an expertise model using static
nalysis based on the source code change history.
To answer RQ3, we study the usefulness of our approach from

evelopers perspective with our industrial partner, a large com-
any producing digital document products, services and printers.
e evaluate WhoReview during a period of two weeks, i.e., ten
orking days on two large software systems developed by our

ndustrial partner using MCR. We denote both projects as Project-
and Project-2 in this paper for confidentiality reasons. During

he study period, for each of the submitted code changes, in
heir chronological order, we generate the top-1 reviewer to be
nvited to perform the review using four reviewers recommen-
ation techniques, WhoReview, RevRec, cHRev, and a baseline
ound-robin approach. The round-robin approach is based on the
eviewer who received the least recent review request, and alter-
ates between all senior team members regardless of the number
f their current outstanding reviews. In total, we evaluated 390
ode change requests, distributed as follows, 184 and 208 code
hange requests, for Project-1 and Project-2, respectively. Thus,
ach approach was evaluated 46 times in Project-1 and 52 times
or Project-2. To get the reviewers opinion on the review re-
uests suggestions, they were asked to provide their willingness
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able 5
he achieved results by each of the MOEAs being compared over 31 independent runs in terms of HV, GD, SP, IC, Precision, Recall, and MRR.

HV GD SP IC Precision@3 Recall@3 MRR

Median p-value (d) Median p-value (d) Median p-value (d) Median p-value (d) Median p-value (d) Median p-value (d) Median p-value (d)

IBEA 0.89 – 0.04 – 0.12 – 0.23 – 0.52 – 0.61 – 0.69 –
NSGA-II 0.85 <0.05 (M) 0.04 No. Diff 0.08 <0.05 (S) 0.19 <0.05 (M) 0.51 No. Diff 0.6 <0.05 (S) 0.67 <0.05 (M)
SPEA2 0.72 <0.05 (L) 0.13 <0.05 (L) 0.05 <0.05 (L) 0.11 <0.05 (L) 0.49 <0.05 (M) 0.57 <0.05 (L) 0.65 <0.05 (L)
MOEA/D 0.71 <0.05 (L) 0.15 <0.05 (L) 0.05 <0.05 (L) 0.12 <0.05 (L) 0.51 No. Diff 0.58 <0.05 (M) 0.65 <0.05 (L)
RS 0.46 <0.05 (L) 0.32 <0.05 (L) 0.02 <0.05 (L) 0.03 <0.05 (L) 0.21 <0.05 (L) 0.29 <0.05 (L) 0.19 <0.05 (L)

The columns p-value (d) report the statistical difference (p-value) based on the Mann–Whitney test and effect-size (d) between IBEA and the algorithm in the current
row.
The effect-size (d) is N : Negligible − S : Small − M : Medium − L : Large.
to accept or decline the request following using a 5 point Likert
scale [64] ranging between ‘‘Strongly Disagree’’ (1) to ‘‘Strongly
Agree’’ (5). To avoid potential biases in the experiment, the in-
dividual reviewers are not aware of the particular experiment
objectives nor the specific approaches being compared.

4.4. Statistical test methods used

Due to the stochastic nature of the MOEAs being evaluated,
we compare the performance of our algorithms by running each
of them 31 independent runs for each code change, for each
project. The obtained results are then statistically analyzed using
the Mann–Whitney test [65,66], a non-parametric statistical test
method, with a 95% confidence level (α = 0.05). Moreover,
we adjusted the p-values using Bonferroni correction [67,68].
Moreover, we assess the effect size to evaluate the algorithms
difference magnitude using the non-parametric effect Cliff’s delta
(d) [69]. The effect size is statistically considered negligible if |

d |< 0.147, small if 0.147 ≤| d |< 0.33, medium if 0.33 ≤| d |<
.474, or high if | d |≥ 0.474.

.5. Results and discussions

esults for RQ1. (SBSE Validation). Table 5 reports the results
or RQ1. The statistical analysis of the achieved results by IBEA
ompared to NSGA-II, SPEA2, MOEA/D, and RS show a compelling
uperiority of IBEA in terms of the four considered MOEA per-
ormance metrics. The best median hypervolume (HV) score is
.89 achieved by IBEA compared to NSGA-II which is the second
est algorithm with medium and large effect sizes. In terms of
he generational distance (GD), both IBEA and NSGA-II achieved
he best performance, 0.04, with no statistical differences. Both
lgorithms outperform SPEA2, MOEA/D and RS with large effect
ize. In terms of spacing (SP), we observe that IBEA achieves the
ighest performance with a median score of 0.23 with statistical
ifferent large effect size compared to the competing algorithms
except for NSGA-II, where the effect size is small). Similar supe-
ior results were also achieved by IBEA in terms of contribution
IC) with medium and large effect size.

To get a more qualitative sense of the obtained results, we
how the Pareto front of each algorithm in Fig. 5 with a randomly
icked review from the OpenStack project. We observe that IBEA
ends to evolve more near-optimal solutions in the middle region
f the identified Pareto front with a good spread of solutions
long the front, pushing it outwards towards the ideal point (i.e.,
igh expertise score and low workload score). We also observe
hat NSGA-II has less non-dominated solutions in the middle of
he Pareto front. However, for both extremes of the Pareto front
e observe that both IBEA and NSGA-II reach similar regions
f the search space. On the other hand, we observe that both
PEA2 and MOEA/D achieve less interesting solutions in their
areto fronts. For the peer reviewers recommendation problem,
ear-optimal solutions within the extreme edges of the Pareto
ront are typically less desirable than solutions in the middle
9

Fig. 5. The Pareto fronts obtained by WhoReview with the different MOEAs.

region. Indeed, solutions in the middle region provide the op-
timal compromise between both objective functions (expertise
and workload). Whereas, extreme edge region solutions represent
reviewers recommendations with either high workload and high
expertise or low workload and low expertise.

In terms of precision, recall and MRR, we observe that the re-
sults are inlined with the MOEA performance metrics. As reported
in Table 5, IBEA achieves the highest results in terms of median
scores for the three metrics precision, recall and MRR with small
to large effect sizes, except for the precision score compared to
NSGA-II and MOEA/D for which the results are not statistically
different. We also observe that random search turns out to be
the worst algorithm in all the studied metrics. These findings
confirm the suitability of our formulation for the peer reviewer
recommendation problem.

Results for RQ2. (State-of-the-art comparison). Table 6 reports
the average precision and recall results achieved by each of
the studied approaches, WhoReview, RevRec, cHRev, RevFinder
and ReviewBot. Clearly, WhoReview achieves the best precision
among the studies approaches in the four systems. In particular,
for the top-1, it reaches the highest precision score at 0.68. We
observe relatively stable results across the four projects with
a precision@1 ranging from 0.58 to 0.68, for Qt and Android,
respectively. Similar results were achieved in terms of recall
where WhoReview provides a higher superiority in the top-10
recommended reviewers with a score ranging from 0.68 to 0.77
for LibreOffice and OpenStack, respectively. Upon close inspection
of the studied projects, we observe a considerable difference
in terms of the projects team sizes and the total number of
reviewers available, e.g., 202 reviewers are available for Qt, while
only 62 are available for LibreOffice (31%). This finding indicates
the good scalability of our approach with respect to the total
number of available reviewers in a project.
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he average precision and recall scores achieved by WhoReview, RevRec, cHRev, RevFinder, and ReviewBot.
Project k Precision@k Recall@k

WhoReview RevRec cHRev RevFinder ReviewBot WhoReview RevRec cHRev RevFinder ReviewBot

Android

1 0.68 0.58 0.5 0.34 0.21 0.45 0.38 0.27 0.18 0.11
3 0.62 0.47 0.35 0.25 0.17 0.52 0.51 0.5 0.39 0.19
5 0.53 0.39 0.3 0.22 0.12 0.65 0.61 0.61 0.48 0.29
10 0.48 0.34 0.26 0.18 0.09 0.73 0.71 0.65 0.54 0.38

OpenStack

1 0.62 0.59 0.48 0.32 0.24 0.46 0.41 0.31 0.15 0.12
3 0.59 0.52 0.42 0.27 0.2 0.59 0.54 0.39 0.29 0.2
5 0.54 0.43 0.38 0.25 0.16 0.62 0.61 0.52 0.37 0.32
10 0.48 0.36 0.31 0.21 0.11 0.77 0.74 0.66 0.46 0.39

Qt

1 0.58 0.49 0.45 0.3 0.22 0.45 0.41 0.33 0.14 0.09
3 0.55 0.45 0.4 0.27 0.19 0.58 0.5 0.47 0.27 0.16
5 0.49 0.41 0.37 0.21 0.13 0.63 0.59 0.52 0.35 0.24
10 0.43 0.34 0.34 0.16 0.09 0.7 0.65 0.6 0.43 0.3

LibreOffice

1 0.61 0.52 0.5 0.48 0.38 0.48 0.34 0.32 0.32 0.18
2 0.56 0.45 0.42 0.4 0.36 0.55 0.48 0.42 0.38 0.22
5 0.53 0.41 0.4 0.32 0.32 0.61 0.57 0.48 0.42 0.31
10 0.46 0.39 0.35 0.3 0.23 0.68 0.59 0.51 0.49 0.38
Fig. 6. Boxplots of the developers evaluation of WhoReview, RevRec, cHRev and round-robin.
While our search-based approach has shown better perfor-
ance than state-of-the-art by combining both workload and
xpertise, the highest precision and recall scores can reach 0.68
nd 0.77, respectively. Indeed, one of the limitations of the eval-
ation of the reviewer recommendation systems, it that it is
ssumed that the people who performed the review are the best
eople to do so, and those who were not invited to review are
ot appropriate as pointed out by prior studies [10,11,18,70].
oreover, we observe from Table 7, that WhoReview achieves the
ighest MRR score ranging from 0.61 to 0.72 for the four studied
rojects. On average, WhoReview achieves an MRR score of 0.66,
utperforming the state-of-the-art approaches, RevRec, cHRev,
evFinder, and ReviewBot achieving an average of 0.60, 0.52, 0.47
nd 0.21, respectively. These results indicate that our approach
an identify appropriate reviewers in the first few ranks. To better
valuate our approach, it is crucial to assess its applicability with
evelopers to assess whether a recommended reviewer would
ccept or decline the review request in real-world context. This
otivates us to deploy WhoReview in an industrial setting and
valuate it from developers view (RQ3).

esults for RQ3. (Industrial validation). Fig. 6 reports the devel-
pers evaluation recorded for our approach, WhoReview, com-
ared to RevRec, cHRev, and round robin for a set of 390 code
eview requests across both projects with our industrial partner.
10
In total, both projects involve 134 contributors who are glob-
ally distributed and adopt MCR. We observe from Fig. 6 a clear
superiority of the average score achieved by WhoReview across
both projects. WhoReview achieved an average of 4.3 and 4.2, for
Project-1 and Project-2, respectively. The second best approach is
RevRec with an average of 2.8 and 2.9. Whereas, cHRev achieved
2.5 and 2.6, and round-robin achieved 2 and 1.9. The statistical
analysis using the Mann–Whitney test indicates that WhoReview
is statistically different from RevRec, cHRev and round robin (see
Fig. 6).

This feedback confirms the effectiveness of WhoReview by
identifying several more valid reviewers recommendations than
the expertise-based approaches (RevRec, and cHRev) and the
baseline round-robin method that iterates between reviewers
regardless their expertise or workload. Upon a closer discussion
with some developers after completing the experimental study,
most of the reviewers who accepted the review requests indicate
that they feel more comfortable with the code reviews being
assigned to them as they come with a good matching with their
current workload and expertise. Reviewers also indicate that a
round-robin approach is not appropriate since not all code re-
views require the same effort and time to be properly completed
as some code change require several iterations with the code
owner before it is merged with the code base. We also found
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WhoReview RevRec cHRev RevFinder ReviewBot

Android 0.72 0.69 0.65 0.60 0.25
OpenStack 0.69 0.63 0.58 0.55 0.30
Qt 0.63 0.54 0.43 0.31 0.22
LibreOffice 0.61 0.52 0.45 0.40 0.07

Average 0.66 0.60 0.52 0.47 0.21

some cases in which, code change owners manually added other
reviewers. We thus excluded all these cases from our study.

5. Threats to validity

This section discusses the potential threats to validity that may
ffect our study.

.1. Threats to construct validity

Threats to construct validity could be related to the perfor-
ance measures. We mainly used standard performance metrics
uch as precision, recall and MRR that are widely used in rec-
mmendation systems and peer code review literature [10,13,
5,16]. Another potential threat could be related to the selec-
ion of MOEA techniques. Although we use the IBEA, NSGA-II,
PEA2, and MOEA/D which are widely used and have shown
igh performance software engineering [52,54,71–74], there are
ther techniques. As part of our future work, we plan to con-
uct a larger comparative study with other search techniques.
oreover, unlike voluntary developers in OSS projects, industrial
evelopers decision to accept or decline a code review invitation
ould be influenced by contractual obligations/commitments. To
itigate this concern, we alternated between WhoReview and

hree baseline techniques.

.2. Threats to internal validity

Threats to internal validity relate to experiments bias. While we
used a longitudinal data benchmark setup to evaluate WhoRe-
view, it is assumed in this benchmark that reviewers who are
involved in the code review were the right ones to review the
change and those who did not participate in the review were not
appropriate reviewers. To mitigate this issue, we evaluated our
approach in an industrial context with the original developers
from two different projects and teams.

5.3. Threats to external validity

Threats to external validity relate to the generalizability of our
results. We have analyzed a total of 157,467 code reviews from
OSS projects, and studied 2 industrial projects with different
team sizes and programming languages. In the future, we plan to
further apply our approach to more projects from both industrial
and OSS worlds.

Other potential threats to validity of our work concern some of
the measurements we used to estimate the developer’s expertise
and workload. For instance, the size(ci) may under- or over-
estimate the workload and could be better improved to consider
the complexity and other quality metrics to better estimate the
required effort instead of simple count of the number of files.
Similarly, the Jaccard similarity score used to identify similar
files may have some limitations. While it is one of the fast and
efficient similarity measures used in prior works [10,46,75] that
requires relatively low computational resources given that we are
already using an evolutionary search which is known by its high
11
computational cost, this measure may not be the most accurate
measurement. To mitigate such issues, we plan on extending
our experiments by performing a comparative study between
state-of-the art similarity models [76,77].

6. Conclusion and future work

We introduced in this paper, WhoReview, a multi-objective
search-based approach to find and recommend relevant peer
reviewers for MCR. We adopt IBEA as a multi-objective search
method to find the optimal set of reviewers that provide the best
trade-off between two conflicting objectives, (1) the reviewers
expertise and collaboration and (2) the reviewers workload. To
evaluate our approach, we conducted an empirical evaluation on
a benchmark of four large scale and long-lived software projects.
Results show our approach outperforms state-of-the-art approach
by an average precision of 0.68 and recall of 0.77. We also con-
ducted an industrial qualitative evaluation with WhoReview to
assess the relevance of our approach from developers perspective
on two large projects from our industrial partner. The obtained
results show the effectiveness of our approach in identifying
relevant reviewers in practice.

As future work, we plan to evaluate our approach in a larger
set of industrial and OSS projects. We want to extend the exper-
tise, collaboration and workload models to consider additional
social and technical aspects to improve the recommendation
accuracy. We also would like to extend WhoReview with an in-
teractive component to record and learn from the decisions of the
invited reviewers to better personalize future recommendations.
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