
Recommending Peer Reviewers in Modern Code Review :
A Multi-Objective Search-based Approach

Motaz Chouchen

ETS Montreal, University of Quebec

Montreal, QC, Canada

moataz.chouchen.1@ens.etsmtl.ca

Ali Ouni

ETS Montreal, University of Quebec

Montreal, QC, Canada

ali.ouni@etsmtl.ca

Mohamed Wiem Mkaouer

Rochester Institute of Technology

Rochester, NY, USA

mwmvse@rit.edu

Raula Gaikovina Kula

Nara Institute of Science and

Technology, Nara, Japan

raula-k@is.naist.jp

Katsuro Inoue

Osaka University

Osaka, Japan

inoue@ist.osaka-u.ac.jp

ABSTRACT
Modern code review is a common practice used by software devel-

opers to ensure high software quality in open source and industrial

projects. During code review, developers submit their code changes

which should be reviewed, via tool-based code review platforms,

before being integrated into the codebase. Then, reviewers provide

their feedback to developers, and may request further modifications

before finally accepting or rejecting the submitted code changes.

However, the identification of appropriate reviewers is still a te-

dious task as the number of code reviews to be performed is inflated

with the increasing number of code changes and the increasing size

of software development teams in today’s large and active software

projects. To help developers with the review process, we introduce

a multi-objective search-based approach to find the appropriate

set of reviewers. We use the Non-dominated Sorting Genetic Algo-

rithm (NSGA-II) to optimize two conflicting objectives (i) maximize

reviewers expertise with the changed files, and (ii) minimize re-

viewers workload in terms of their current open code reviews. We

conduct a preliminary evaluation on two open source projects to

evaluate our approach. Results indicate that our approach is efficient

as compared to state-of-the-art approaches.

CCS CONCEPTS
• Software and its engineering→ Software maintenance tools;

• Human-centered computing → Empirical studies in collabo-

rative and social computing;

1 INTRODUCTION
Peer code review is a well-established and widespread software

engineering practice that aims at ensuring software quality, and

sustaining software development teams in both industrial and open-

sourcesoftware (OSS) projects [1]. Modern Code Review (MCR)

originates from the classic code inspection [4] where formal and

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7127-8/20/07.

https://doi.org/10.1145/3377929.3390057

in-person meetings are required to discuss about potential prob-

lem with the code changes before they are merged with the code

repository. MCR fosters less formal, lightweight and tool-based

code review where developers can submit, discuss and rework code

changes prior merging them.

Finding appropriate code reviewers is a non-trivial decision-

making task in software engineering involving several consider-

ations. As modern software projects code-base and development

teams size are in constant increase, reviewers identification is be-

coming more challenging. In typical software projects, source files

could be edited by several contributors, and reviewed by several

reviewers. Contributors and reviewers could perform different soft-

ware engineering tasks with different workloads. It is thus more

difficult to identify suitable peer reviewers especially when the

number of changed modules/files is large and reviewers are over-

loaded with different submitted code changes. Various approaches

have been proposed to recommend code reviewers relying mostly

on the expertise with the code files being submitted for review

[5, 6, 8]. However, most of these approaches deal with the peer

reviewers recommendation problem from a single perspective, i.e.,
reviewers expertise and/or past collaborations, ignoring an impor-

tant aspect which is the reviewers workload. Hence, reviewers are
recommended regardless of their number of outstanding reviews.

To address this issue, we extend our previous work [5] by intro-

ducing a new reviewers recommendation formulation as a multi-

objective search based problem. Our approach aims at finding the

set of suitable developers that provide an optimal trade-off between

two objectives (1) reviewers expertise with the changed code files

and (2) reviewers workload through balancing code review tasks

among available reviewers. We use the Non-dominated Sorting

Genetic Algorithm (NSGA-II) [3]. We present an evaluation of our

approach on two OSS projects. Results indicate that our approach

is efficient as compared to state-of-the-art approaches.

2 APPROACH
Our approaches takes as input (1) a submitted code change for

review which consists of a set of changed files submitted by a

given developer from the project’s team, and (2) the history of code

reviews collected from the project’s review platform, e.g., Gerrit.
As output, our approach returns a set of recommended reviewers

that are most appropriate to review the submitted code change.

To search for the best set of candidate reviewers, our approach

307

https://doi.org/10.1145/3377929.3390057


GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico M. Chouchen et al.

uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) [3].

The search process aims at finding the best trade-off between two

objectives :

• Maximize the reviewers expertise and collaboration : We use

the reviewers expertise and collaboration model defined in

[5]. It is calculated by leveraging (i) the number of comments

in prior reviews on similar files based on the file path similar-

ity while considering the recency factor, and (ii) the collabo-
ration social network between the developer who submitted

the code change and the contributors in the project.

• Minimize the reviewers workload : We calculate the workload

of a reviewer based on the number of open reviews she/he is

currently involved in (with at least one review comment). For

each current code change, we calculate her/his workload in

terms of (i) the number of changed files and (ii) the average
time (in days) spent in reviewing prior code changes involv-

ing these files as an estimation of the required workload for

reviewing the current file.

We use a vector encoding for the solution representation where

each dimension corresponds to a random reviewer ID that is picked

from the list of available reviewers in the project. For the change

operators, we use the standard single-point cut crossover and a

creep mutation where one or more random dimensions are selected

and changed with random values (i.e., reviewers).

3 EVALUATION
Experiment setup.We evaluate our approach on two OSS projects

from an an existing benchmark
1
that were studied in recent MCR

research literature [5–8], namely Android
2
and Qt

3
. Table 1 shows

the dataset statistics. We compare the efficiency of approach with

recent state-of-the-art techniques, RevRec [5], cHRev [8], and Re-

viewBot [2]. RevRec [5] uses a mono-objective search based ap-

proach to identify reviewers that more most experienced and have

previous collaborations. cHRev [8] uses reviewers expertise model

the history of reviews based on the review comments frequency and

recency. RevFinder. ReviewBot [2] uses static analysis to build an

expertise model based on the source code change history. Our com-

parison is based on the precision@k, recall@k and mean reciprocal

rank (MRR) performance metrics used in prior works [5–8].

Table 1: Statistics of both studied systems Android and Qt.

System #Reviews #Reviewers #Files Av. files per review

Android 5,126 94 26,840 8.26

Qt 23,810 202 78,401 10.64

Results. Table 2 reports the average precision and recall results

achieved by each of the studied approaches, NSGA-II, RevRec,

cHRev and ReviewBot. We observe that NSGA-II achieves the high-

est precision among RevRec, cHRev and ReviewBot in both systems.

In particular, for the top-1, it achieves the highest precision score at

0.67. We notice consistent results across both projects with a preci-

sion@1 of 0.67 and 0.57 for Android and Qt, respectively. Likewise,

in terms of recall, our approach achieves a higher performance in

the top-10 recommended reviewers with a score of 0.73 and 0.69 for

1
https://kin-y.github.io/miningReviewRepo

2
https://source.android.com/

3
http://qt-project.org/

Android and Qt, respectively. Moreover, Table 3 reports the MRR

results reflecting the overall ranking performance. Our approach

achieves superior MRR scores of 0.72 for Android and 0.61 for Qt as

compared to RevRec, cHRev and ReviewBot. This indicated that our

approach provides a higher chance of recommending appropriate

reviewers in the first ranks. To get a more qualitative sense on

the studied projects, we observe a high divergence in terms of the

projects team sizes and the total number of reviewers available,

e.g., Qt has 202 reviewers, while Android has only 94. This finding

indicates the good scalability of our approach with respect to the

total number of available reviewers in a project.

Table 2: The average precision@k and recall@k results.
Precision@k Recall@kProject k

NSGA-II RevRec cHRev ReviewBot NSGA-II RevRec cHRev ReviewBot

1 0.67 0.58 0.5 0.21 0.44 0.38 0.27 0.11

3 0.61 0.47 0.35 0.17 0.52 0.51 0.5 0.19

5 0.51 0.39 0.3 0.12 0.64 0.61 0.61 0.29

Android

10 0.47 0.34 0.26 0.09 0.73 0.71 0.65 0.38

1 0.57 0.49 0.45 0.22 0.45 0.41 0.33 0.09

3 0.54 0.45 0.4 0.19 0.57 0.5 0.47 0.16

5 0.49 0.41 0.37 0.13 0.61 0.59 0.52 0.24

Qt

10 0.42 0.34 0.34 0.09 0.69 0.65 0.6 0.3

Table 3: The achieved MRR scores by each approach.
NSGA-II RevRec cHRev ReviewBot

Android 0.72 0.69 0.60 0.25

Qt 0.61 0.54 0.31 0.22

4 CONCLUSION AND FUTUREWORK
We introduced in this paper a multi-objective approach to find and

recommend code reviewers for MCR using NSGA-II. Our approach

aims at optimizing (1) the reviewers expertise and collaboration

and (2) the reviewers workload. As a preliminary evaluation on

two large OSS projects, we found that our approach outperforms

recent approaches based ont the reviewers expertise in terms of

precision, recall and MRR. As future work, we plan to evaluate our

approach on a larger set of industrial and OSS projects. We plan

also to extend the expertise, collaboration and workload models to

consider additional socio-technical factors and extend our approach

with an interactive component to consider developers preferences.

REFERENCES
[1] Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Chal-

lenges of Modern Code Review. In 35th International Conference on Software Engi-
neering (ICSE). Piscataway, NJ, USA, 712–721.

[2] Vipin Balachandran. 2013. Reducing Human Effort and Improving Quality in Peer

Code Reviews Using Automatic Static Analysis and Reviewer Recommendation.

In 35th International Conference on Software Engineering (ICSE). 931–940.
[3] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A

fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (2002), 182–197.

[4] M. E. Fagan. 1976. Design and code inspections to reduce errors in program

development. IBM Systems Journal 15, 3 (1976), 182–211.
[5] Ali Ouni, Raula Gaikovina Kula, and Katsuro Inoue. 2016. Search-based peer re-

viewers recommendation in modern code review. In IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 367–377.

[6] Thongtanunam Patanamon, T. Chakkrit, Gaikovina Kula Raula, Yoshida Norihiro,

Iida Hajimu, and Matsumoto Ken-ichi. 2015. Who Should Review My Code? A

File Location-Based Code-Reviewer Recommendation Approach for Modern Code

Review. In Int. Conf. on Software Analysis, Evolution, and Reengineering.
[7] Xin Yang, Raula Gaikovina Kula, Norihiro Yoshida, and Hajimu Iida. 2016. Mining

the Modern Code Review Repositories: A Dataset of People, Process and Product.

In 13th Working Conference on Mining Software Repositories (MSR).
[8] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2015. Automati-

cally recommending peer reviewers in modern code review. IEEE Transactions on
Software Engineering 42, 6 (2015), 530–543.

308

https://kin-y.github.io/miningReviewRepo
https://source.android.com/
http://qt-project.org/

	Abstract
	1 Introduction
	2 Approach
	3 Evaluation
	4 Conclusion and Future Work
	References

